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CHAPTER

ONE

INTRODUCTION

This guide documents CULA Sparse’s programming interface. CULA Sparse™ is an implementation of sparse linear
algebra routines for CUDA-enabled NVIDIA graphics processing units (GPUs). This guide is split into the following
sections:

• Using the API - A high level overview of how to use configure, use, and interpret the results from the iterative
solvers in the CULA Sparse library.

• Data Types - A description of the all datatypes used the library.

• Framework Functions - A description of the functions used to initialize and configure the library.

• Iterative Preconditioners - An overview of the preconditioners available within CULA Sparse.

• Iterative Solvers - A description of the iterative solvers functions available in the library.

• Performance and Accuracy - Information on how to maximize the performance of the library. Also includes a
handful of performance charts.

• Common Errors - Solutions to errors commonly encountered when using the API.

1.1 Sparse Linear Systems

Many problems in science and engineering, particularly those related to partial differential equations (PDEs), can be
represented by a linear system where only a few elements in the matrix are non-zero. For these systems, it would
be wasteful, in both storage and computation, to represent all of the elements. To address these common problems,
storage formats and methods have been developed to solve sparse matrices with minimal memory and computation
requirements. These methods can be broken into two main categories: direct methods and iterative methods.

Direct methods, common for dense matrices, attempt to solve system in a two-step process. Typical algorithms include
LU and QR factorization where the linear system is transformed into an equivalent system that can be solved using
Gaussian elimination. Direct methods can also be applied to sparse systems but algorithms become increasingly
complex in an attempt to minimize storage and computation.

The other class of sparse solvers, and those currently implemented in CULA Sparse, are iterative methods. These
methods attempt to coverage on solution to the system Ax = b by continuously iterating over new solutions until a
solution’s residual, typically defined as ||b−Ax||/||b||, is under a given tolerance. At each step, a solution is calculated
using a technique specific to the given algorithm. Because it is possible for iterative methods to fail to find a solution,
they are commonly configured with a maximum number of iterations.

A common method to improve the speed at which a solution converges is called preconditioning. These methods
attempt, at each iteration, to transform the original linear system into a new equivalent system that can more readily
be solved. This adds overhead, in both memory and time per iteration, but will often result in a shorter end-to-end
solution time.
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Chapter 1 | Introduction

1.2 Supported Operating Systems

CULA Sparse intends to support the full range of operating systems that are supported by CUDA. Installers are cur-
rently available for Windows, Linux, and MAC OS X in 32-bit and 64-bit versions. CULA Sparse has been tested on
the following systems:

• Windows XP / Vista / 7

• Ubuntu Linux 9.04 (and newer)

• Red Hat Enterprise Linux 4.8 / 5.3

• Fedora 11

• Mac OSX 10.6 Snow Leopard

Please provide feedback on any other systems on which you attempt to use CULA Sparse. Although we are continually
testing CULA Sparse on other systems, at present we officially support the above list. If your system is not listed, please
let us know through the provided feedback channels.

1.3 Attributions

This work has been made possible by the NASA Small Business Innovation Research (SBIR) program. We recognize
NVIDIA for their support.

CULA Sparse is built on NVIDIA CUDA 4.0 and NVIDIA CUSPARSE.

CULA Sparse uses COLAMD, covered by the GNU LGPL license. The source code for COLAMD is used in an
unmodified fashion; a copy of this code is distributed in the src/suitesparse directory of this package.

Many of the algorithms and methods from this library were developed based on Yousef Saad’s textbook “Iterative
Methods for Sparse Linear Systems”.
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CHAPTER

TWO

GETTING STARTED

2.1 System Requirements

CULA Sparse utilizes CUDA on an NVIDIA GPU to perform linear algebra operations. Therefore, an NVIDIA GPU
with CUDA support is required to use CULA Sparse. A list of supported GPUs can be found on NVIDIA’s CUDA
Enabled webpage.

Support for double-precision operations requires a GPU that supports CUDA Compute Model 1.3. To find out what
Compute Model your GPU supports, please refer to the NVIDIA CUDA Programming Guide.

Note: CULA Sparse’s performance is primarily influenced by the processing power of your system’s GPU, and as
such a more powerful graphics card will yield better performance.

2.2 Installation

Installation is completed via the downloadable installation packages. To install CULA Sparse, refer to the section
below that applies to your system.

Windows

Run the CULA Sparse installer and when prompted select the location to which to install. The default install
location is c:\Program Files\CULA\S#, where S# represents the release number of CULA Sparse.

Linux

It is recommended that you run the CULA Sparse installer as an administrator in order to install to a system-level
directory. The default install location is /usr/local/culasparse.

Mac OS X Leopard

Open the CULA Sparse .dmg file and run the installer located inside. The default install location is
/usr/local/culasparse.

Note: You may wish to set up environment variables to common CULA Sparse locations. More details are available
in the Configuring Your Environment chapter.
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Chapter 2 | Getting Started

2.3 Compiling with CULA Sparse

CULA Sparse presents one main C header, cula_sparse.h. You must include this header in your C source file to use
CULA Sparse.

2.4 Linking to CULA Sparse

CULA Sparse provides a link-time stub library, but is otherwise built as a shared library. Applications should link
against the following libraries:

Windows

Choose to link against cula_sparse.lib and cula_core.lib as a link-time option.

Linux / Mac OS X Leopard

Add -l cula_core -lcula_sparse to your program’s link line.

CULA Sparse is built as a shared library, and as such it must be visible to your runtime system. This requires that
the shared library is located in a directory that is a member of your system’s runtime library path . For more detailed
information regarding operating-system-specific linking procedures, please refer to the Configuring Your Environment
chapter.

CULA Sparse’s example projects are a good resource for learning how to set up CULA Sparse for your own project.

Note: CULA Sparse is built against NVIDIA CUDA 4.0 and ships with a copy of the CUDA 4.0 redistributable
files. If you have a different version of CUDA installed, you must ensure that the CUDA runtime libraries shipped
with CULA Sparse are the first visible copies to your CULA Sparse program. This can be accomplished by placing
the CULA Sparse bin path earlier in your system PATH than any CUDA bin path. If a non-CUDA 4.0 runtime loads
first, you will experience CULA Sparse errors. See the Checking That Libraries are Linked Correctly example for a
description of how to programmatically check that the correct version is linked.

2.5 Uninstallation

After installation, CULA Sparse leaves a record to uninstall itself easily. To uninstall CULA Sparse, refer to the section
below that applies to your system.

Windows

From the Start Menu, navigate to the CULA Sparse menu entry under Programs, and select the Uninstall option.
The CULA Sparse uninstaller will remove CULA Sparse from your system.

Linux

Run the CULA Sparse installer, providing an ‘uninstall’ argument.
e.g. ./cula.run uninstall
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Mac OS X Leopard

There is no uninstallation on OS X, but you can remove the folder to which you installed CULA Sparse for a
complete uninstall.

Note: If you have created environment variables with references to CULA Sparse, you may wish to remove them
after uninstallation.
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CHAPTER

THREE

USING THE API

This chapter describes, at a high level, how to use the CULA Sparse API. Basic information about how to initialize
and configure an iterative solver is discussed. Furthermore, we introduce how to collect and interpret the results from
the iterative solvers as well any error condition that may occur.

Further specifics are found in the subsequent chapters.

3.1 Initialization

The CULA Sparse library is initialized by calling the culaSparseInitialize() function. This function must
be called before any of the iterative solvers are invoked. It is possible to call other CULA framework functions such
as culaSelectDevice() prior to initialization. For interoperability with CULA, this routine will also perform the
culaInitialize() operation.

// initialize cula sparse library
culaSparseInitialize();

3.2 Memory Management

In CULA Sparse, all functions accept pointers to matrices defined on the host; that is, matrices allocated with
malloc(), new, or std::vector. CULA Sparse will automatically transfer the data to-and-from the acceler-
ated device. This step is performed concurrently to other operations and yields almost no performance impact for this
transfer.

Note: Future versions may relax this requirement and allow direct device memory access.

// allocate solver data on host using malloc (C)
double* data = (double*) malloc( nnz * sizeof(double) );
// allocate solver data on host using new[]
double* data = new double[nnz];
// allocate solver data on host using a std vector (C++)
std::vector <double> data( nnz );

3.3 Indexing Formats

CULA Sparse supports both 0 (C/C++) and 1 (FORTRAN) based indexing through the indexing field of the
culaIterativeConfig configuration structure. The default is zero-based indexing.
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3.4 Sparse Matrix Storage Formats

CULA Sparse currently supports three major matrix storage formats: coordinate, compressed row, and compressed
column. It is recommended to use the compressed row format when possible.

3.4.1 Coordinate Format (COO)

In the coordinate format, a sparse matrix is represented by three vectors sized by the number of non-zero elements of
the system. The common abbreviation for this length, nnz is used throughout the API and this document.

• values - the non-zero data values within the matrix; length nnz

• row index - the associated row index of each non-zero element; length nnz

• column index - the associated column index of each non-zero element; length nnz

Consider the following 3x3 matrix with 6 non-zero elements:

A =

1.0 4.0 0.0
2.0 5.0 0.0
3.0 0.0 6.0


In a zero-indexed coordinate format, this matrix can be represented by the three vectors:

values =
[
1.0 2.0 3.0 4.0 5.0 6.0

]
column index =

[
0 0 0 1 1 2

]
row index =

[
0 1 2 0 1 2

]
In the CULA Sparse interface, the values are denoted as a, the column index as colInd, and the row index as rowInd.

3.4.2 Compressed Sparse Row (CSR) Format

In the compressed sparse row format, the row index vector is replaced by a row pointer vector of size m + 1. This
vector now stores the locations of values that start a row; the last entry of this vector points to one past the final data
element. The column index is as in COO format.

Consider the same 3x3 matrix, a zero-indexed CSR format can be represented by three vectors:

values =
[
1.0 4.0 2.0 5.0 3.0 6.0

]
column index =

[
0 1 0 1 0 2

]
row pointer =

[
0 2 4 6

]
In the CULA Sparse interface, the values are denoted as a, the column index as colInd, and the row pointer as rowPtr.

3.4.3 Compressed Sparse Column (CSC) Format

In the compressed sparse column format, the column index vector is replaced by a column pointer vector of size n+1.
This vector now stores the locations of values that start a column; the last entry of this vector points to one past the
final data element. The row index is as in COO format.

Consider the same 3x3 matrix, a zero-indexed CSC format can be represented by three vectors:

values =
[
1.0 2.0 3.0 4.0 5.0 6.0

]
row index =

[
0 1 2 0 1 2

]
column pointer =

[
0 3 5 6

]
In the CULA Sparse interface, the values are denoted as a, the column pointer as colPtr, and the row index as rowInd.
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3.4.4 More Information

For more information regarding these storage formats, we recommend reading Section 3.4, Storage Schemes, Yousef
Saad’s textbook “Iterative Methods for Sparse Linear Systems”.

3.5 Numerical Types

CULA Sparse provides two data types with which you can perform computations.

Symbol Interface Type Meaning
D culaDouble double precision floating point

Z culaDoubleComplex double precision complex floating point

The culaDoubleComplex type can be made to be identical to the cuComplex type provided by CUDA, by
#define CULA_USE_CUDA_COMPLEX prior to including any CULA headers.

3.6 Common Solver Configuration

All iterative solvers within CULA Sparse utilize a common configuration parameter to steer the execution of the solver.
The configuration parameter is represented by the culaIterativeConfig structure and is the first parameter to
any solver function within the library. The configuration parameter informs the API of the desired solve by specifying:

• The tolerance at which a solve is marked as converged

• The maximum number of iterations to run

• Whether the input matrices use zero- or one-based indexing

• Whether a debugging mode should be enabled

More parameters may be added in the future.

Configuration parameters must be set up before a solver can be called. The configuration parameter is initialized by
the culaIterativeConfigInit() function. This function ensures that all parameters within this structure are
set to reasonable defaults. After calling this function, you may set specific parameters to your needs.

Example configuration:

// create configuration structure
culaIterativeConfig config;

// initialize values
culaIterativeConfigInit(&config);

// configure specific parameters
config.tolerance = 1.e-6;
config.maxIterations = 300;
config.indexing = 0;

3.7 Naming Conventions

Four major concepts are conveyed by the function names of the iterative system solvers within the CULA Sparse
library:
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cula{type}{storage}{solver}{precond}(...)

Here, each {...} segment represents a different major component of the routine. The following table explains each of
these components:

Name Meaning
type data type used

storage sparse matrix storage format used

solvers iterative method used

precond preconditioner method used

For example, the routine culaDcsrCgJacobi()will attempt to solve a double precision sparse matrix stored in the
compressed sparse row (CSR) storage format using the conjugate gradient (CG) method with Jacobi preconditioning.

3.8 Choosing a Solver and Preconditioner

Choosing a proper solver is typically determined by the class of the input data. For example, the CG method is only
appropriate for symmetric positive definite matrices.

Preconditioner selection is more of an art - the method chosen is tightly coupled to the specifics of the linear system.
That is, the computational tradeoffs of generation and application of the preconditioner will be different for different
systems.

// call CG solver with Jacobi preconditioner
culaStatus status = culaDcsrCgJacobi( &config, n, nz, val, colInd, rowPtr,

x, rhs, &result );

3.9 Iterative Solver Results

To convey the status of a given routine, the iterative solver routines return a culaStatus code and also populates a
culaIterativeResult output structure.

The culaStatus return code is common between the CULA and CULA Sparse libraries. It is a high level status
code used to indicate if the associated call has completed successfully. Systemic errors that prevented execution are
presented in this code, such as not initializing CULA, GPU of insufficient capability, or out-of-memory conditions.
Most details of mathematical progress of a solver will be presented in culaIterativeResult.

if ( culaStatus == culaNoEror )
{

// solution within given runtime parameters was found
}

The culaIterativeResult structure provides additional information regarding the computation such as:

• A flag that denotes the solvers converged or a reason why convergence failed

• The number of iterations performed, regardless of whether this led to convergence

• The solution residual when the solve ended

• Timing information for the overhead, preconditioner generation, and solving
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This structure is returned from all iterative solves.

CULA Sparse also provides a utility function for culaIterativeResult, which is called
culaIterativeResultString(), that constructs a readable string of information that is suitable for
printing. In many cases, this function is able to provide information beyond that which is available by inspection of
the structure, and so it is recommended that it be used whenever attempting to debug a solver problem.

// allocate result string buffer
const int bufferSize = 256;
char buffer[bufferSize];

// fill buffer with result string
culaIterativeResultString( &result, buffer, bufferSize );

// print result string to screen
printf( "%s\n", buffer );

Example output:

Solver: CG (Jacobi preconditioner)
Flag: Converged successfully in 213 iterations
Residual: 9.675273e-007
Total Time: 0.01363s (overhead + precond + solve)

Overhead: 3.845e-005s
Precond: 0.001944s
Solve: 0.01165s

3.10 Data Errors

In CULA Sparse, the culaDataError return status is used to describe any condition for which the solver failed to
converge on solution within the given configuration parameters.

Possible reasons for returning a culaDataError include:

• Preconditioner failed to generate; no iterations attempted

• Maximum number of iterations exceeded without reaching desired tolerance

• An internal scalar quantity became too large or small to continue

• The method stagnated

• The input data contained values of nan or inf

These possible reasons are enumerated by the flag field of the culaIterativeResult structure.

In some cases, a user may wish to get the best possible result in a fixed number of iterations. In such a case, a data error
can be interpreted as success if and only if the flag is culaMaxItReached. The residual should then be consulted
to judge the quality of solution obtained in the budgeted number of iterations.

if ( status == culaDataError && result.flag == culaMaxItReached )
{

// solver executed but the method did not converge to tolerance
// within the given iteration limit; it is up to programmer
// judgement whether the result is now acceptable

}
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3.11 Timing Results

For convenience, the culaIterativeResult result structure contains high precision timing information regarding
the runtime of the iterative solver. This timing is broken down into three major components:

• Overhead - This includes memory allocations, transfers to-and-from the GPU, and internal operations such as
storage type conversion.

• Preconditioner - The time taken to generate the requested preconditioner. This does not include the per-iteration
time to apply the preconditioner; the per-iteration time of a preconditioner is included in the solver time.

• Solver - This represents the time spent in the actual iteration loop

Additionally, the total time is returned which is a sum of these three values. All values are in seconds.

3.12 Residual Vector

For some users, it may be desirable to capture the relative residual of the solver at each iteration. CULA Sparse
provides a mechanism to obtain this information, via a parameter in the configuration structure. This parameter,
result.byIteration is normally set to NULL, but may be assigned by the user to specify an array into which
the residual by iteration should be stored. It is up to the user to ensure that this location has enough memory to store
the residual for each iteration; in practice this is achieved by ensuring that the specified array is long enough to store
one double precision value for each requested iteration.
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CHAPTER

FOUR

DATA TYPES

This function describes the various data types used throughout the CULA Sparse library. These types are accepted as
arguments by or returned by various interface functions in the library, which will be described later.

Unless otherwise specified, data types are declared in cula_sparse.h.

4.1 culaStatus

This type is declared in cula_status.h.

The culaStatus type is used for all status returns. All CULA and CULA Sparse functions return their statuses with
the following values being defined:

Status Code Meaning
culaNoError No error

culaNotInitialized CULA has not been initialized

culaNoHardware No hardware is available to run

culaInsufficientRuntime CUDA runtime or driver is not supported

culaInsufficientComputeCapability Available GPUs do not support the requested operation

culaInsufficientMemory There is insufficient memory to continue

culaFeatureNotImplemented The requested feature has not been implemented

culaArgumentError An invalid argument was passed to a function

culaDataError An operation could not complete because of singular data

culaBlasError A blas error was encountered

culaRuntimeError A runtime error has occurred

4.2 culaVersion

This type is declared in cula_types.h.

The culaVersion data type denotes the version of a library in the format XXXYY where XXX is the major version
number and YY is the minor version number.
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4.3 culaIterativeConfig

The culaIterativeConfig data type is an input structure that contains information that steers execution of
iterative functions with the following fields:

Name Type Description
indexing int Indicates whether the sparse indexing arrays are represented using 0 (C/C++)

or 1 (FORTRAN) based indexing.

tolerance double The tolerance is the point at which a lower residual will cause the solver to
determine that the solution has converged.

maxIterations int The maximum number of iterations that the solver will attempt

residualVector double* This parameter provides the means for a user to capture the residual at each
iteration. The specified array must be at least maxIter in length. This parameter
may be NULL if these quantities are not desired.

useInitialResultVector int Indicates whether the ‘x’ vector in iterative solves should be used as given or
ignored. When ignored, the ‘x’ vector is considered a zero.

useBestAnswer int Indicates whether the ‘x’ vector in iterative solves should return the final
answer or the best answer and its associated iteration number in the case of
non-convergence.

useStagnationCheck int Indicates whether to check whether the iterative solve stagnated. This option
defaults to on; turning this option off will increase performance if a problem is
certain not to stagnate.

debug int Specifies whether to perform extra checks to aid in debugging

4.4 culaIterativeResult

The culaIterativeResult data type is an output structure containing information regarding the execution of the
iterative solver and associated preconditioner. Fields in this data type include:

Name Type Description
flag culaIterativeFlag Enumeration containing information about the success or failure of the iterative

solver

code unsigned long long Internal information code

iterations int Number of iterations taken by the iterative solver

residual culaIterativeResidual Structure containing information about the residual

timing culaIterativeTiming Structure containing timing information about the iterative solver and
associated preconditioners

4.5 culaIterativeFlag

The culaIterativeFlag data type is an output enumeration containing a set of all possible success and mathe-
matical error conditions that can be returned by the iterative solver routines. Possible elements include:
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Flag Value Meaning
culaConverged The solve converged successfully

culaMaxItReached Maximum iterations reached without convergence

culaPreconditionerFailed The specified preconditioner failed

culaStagnation The iterative solve stagnated

culaScalarOutOfRange A scalar value was out of range

culaUnknownIterationError An unknown iteration error was encountered

For more information about various failure conditions, see the Common Errors chapter.

4.6 culaIterativeResidual

The culaIterativeResidual data type is an output structure that contains information about the residual of an
iterative function with the following fields:

Member Type Description
relative double The relative residual obtained by the iterative solver when computation has

completed or halted

byIteration double* If requested, the residual at every step of iteration

For more information, see Residual Vector.

4.7 culaIterativeTiming

The culaIterativeTiming data type is an output structure containing timing information for execution of an
iterative function with the following fields:

Member Type Description
solve double Time, in seconds, the solve portion of the iterative solver took to complete

preconditioner double Time, in seconds, the preconditioner generative portion of the iterative solver
took to complete

overhead double Time, in seconds, of overhead needed by the iterative solver; includes memory
transfers to-and-from the GPU

total double Time, in seconds, the entire iterative solver took to complete

For more information see Timing Results.

4.8 culaReordering

The culaReordering data type is an enum that specifies a reordering strategy for certain preconditioners. For
some matrices, reordering can introduce additional parallelism that can allow the solver to proceed more efficiently on
a parallel device.

Flag Value Meaning
culaNoReordering Do not do any reordering

culaAmdReordering Reorder using the approximate minimum degree ordering method

culaSymamdReordering Reorder using the symmetric minimum degree ordering method (SYMAMD)
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4.9 Options Structures

Solver and preconditioner options structures allow you to steer the execution of a given solver and preconditioner.
They are the second and third parameters for all solver functions, respectively. For documentation on individual
options structures, see the corresponding solver or preconditioner section.

Initializing these structures is done with a method that matches the name of the associated solver or preconditioner
with an Init appended.

// create options structure
culaBicgOptions solverOpts;

// initialize values
culaBicgOptionsInit(&solverOpts);

// configure specific parameters (if applicable)
// . . .

Several options structures have reserved parameters. These structures are implemented in this way so as to maintain
uniformity in the solver parameter list and to provide compatibility for possible future code changes. We recommend
that you make sure to call the options initialization function (as shown above) for all options in the case that any
parameters are added to it in the future. A NULL pointer may be passed, in which case reasonable defaults will be
assigned. As this may change in future versions, it is recommended to explicitly construct the structures.
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CHAPTER

FIVE

FRAMEWORK FUNCTIONS

This section describes the helper functions associated CULA Sparse library. These functions include initializing,
configuration, and result analysis routines found in cula_sparse.h.
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CHAPTER

SIX

ITERATIVE PRECONDITIONERS

Preconditioning is an additional step to aid in convergence of an iterative solver. This step is simply a means of
transforming the original linear system into one which has the same solution, but which is most likely easier to
solve with an iterative solver. Generally speaking, the inclusion of a preconditioner will decrease the number of
iterations needed to converge upon a solution. Proper preconditioner selection is necessary for minimizing the number
of iterations required to reach a solution. However, the preconditioning step does add additional work to every iteration
as well as up-front processing time and additional memory. In some cases this additional work may end up being a
new bottleneck and improved overall performance may be obtained using a preconditioner that takes more steps to
converge, but the overall runtime is actually lower. As such, we recommend analyzing multiple preconditioner methods
and looking at the total runtime as well the number of iterations required.

This chapter describes several preconditioners, which have different parameters in terms of effectiveness, memory
usage, and setup/apply time.

For additional algorithmic details regarding the methods detailed in this chapter, we recommend reading the “Precon-
ditioning Techniques” chapter from Yousef Saad’s textbook “Iterative Methods for Sparse Linear Systems”.

6.1 No Preconditioner

To solve a system without a preconditioner, simply call the solving routine without a preconditioner suffix, such as
culaDcsrCg(). A NULL pointer may be passed for the precondOpts parameter.

6.2 Jacobi Preconditioner

The Jacobi precondition is a simple preconditioner that is a replication of the diagonal:

Mi,k =
{

Ai,j if i = j
0 otherwise

The Jacobi preconditioner is very lightweight in generation, memory usage, and application. As such, it is often a
strong choice for GPU accelerated solvers.

As detailed in Iterative Solvers, the Jacobi preconditioner is invoked by calling an iterative solver with the Jacobi suffix
along with the culaJacobiOptions input struct parameter (see Options Structures).
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6.3 Block Jacobi

The Block Jacobi preconditioner is an extension of the Jacobi preconditioner where the matrix is now represented as a
block diagonal of size b:

Mi,k =
{

Ai,j if i and j are within the block subset, b
0 otherwise

M =

B0 · · · 0
...

. . .
...

0 · · · Bn


This preconditioner is a natural fit for systems with multiple physical variables that have been grouped into blocks.

The Block Jacobi preconditioner requires more computation in both generation and application than the simpler Jacobi
preconditioner. However, both generation and application are parallel operations that map well to the GPU.

As detailed in Iterative Solvers, the block Jacobi preconditioner is invoked by calling an iterative solver with the
Blockjacobi suffix along with the culaBlockjacobiOptions input struct parameter.

6.3.1 culaBlockjacobiOptions

Name Type Description
blockSize int Block size for the Jacobi Preconditioner

6.4 ILU0

The ILU0 preconditioner is an incomplete LU factorization with zero fill-in, where L ∗ U ≈ A:

M =
{

L, lower triangular
U, upper triangular

The ILU0 preconditioner is lightweight in generation, and due to the zero-fill component, requires roughly the same
memory as the linear system trying to be solved. In application, the ILU0 preconditioner requires two triangular solve
routines - a method not well suited for parallel processing platforms such as the GPU or multicore processors. As
such, using the ILU0 preconditioner may result in a reduced number of iterations at the cost of a longer runtime.

In comparison to Jacobi, the construction and application time and the memory requirements are higher for ILU0. For
some matrices, the ILU0 might result in significantly improved convergence, which can offset the costs.

In order to successfully complete the factorization, the input matrix must have a diagonal entry in every row, and it
must be nonzero. Failure to meet this criteria will result in a culaPreconditionerFailed code.

As detailed in Iterative Solvers, the ILU0 preconditioner is invoked by calling an iterative solver with the “Ilu0” suffix
along with the culaIlu0Options input struct parameter.

6.4.1 culaIlu0Options

Name Type Description
reordering culaReordering Specifies a reordering strategy for the input matrix. This option defaults to

culaNoReordering. For more information, see the culaReordering
section.
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CHAPTER

SEVEN

ITERATIVE SOLVERS

This section describes the iterative solvers routines available in the CULA Sparse library.

For algorithmic details regarding the methods detailed in this chapter, we recommend reading the “Krylov Subspace
Methods: Part 1 & 2” chapters from Yousef Saad’s textbook “Iterative Methods for Sparse Linear Systems”.

7.1 Conjugate Gradient (CG)

culaStatus cula{storage}Cg{preconditioner}(
const culaIterativeConfig* config,
const culaCgOptions* solverOpts,
{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);

culaDcsrCg culaDcscCg culaDcooCg

culaDcsrCgIlu0 culaDcscCgIlu0 culaDcooCgIlu0

culaDcsrCgJacobi culaDcscCgJacobi culaDcooCgJacobi

culaDcsrCgBlockjacobi culaDcscCgBlockjacobi culaDcooCgBlockjacobi

culaZcsrCg culaZcscCg culaZcooCg

culaZcsrCgIlu0 culaZcscCgIlu0 culaZcooCgIlu0

culaZcsrCgJacobi culaZcscCgJacobi culaZcooCgJacobi

culaZcsrCgBlockjacobi culaZcscCgBlockjacobi culaZcooCgBlockjacobi

This family of functions attempt to solve Ax = b using the conjugate gradient (CG) method where A is a symmetric
positive definite matrix stored in a sparse matrix format and x and b are dense vectors. The matrix must be a fully
populated symmetric; i.e. for each populated entry Aij there must be an identical entry Aji.

Solver Trait Value
matrix class Symmetric Positive Definite

memory overhead 6n

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.
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7.1.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaCgOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure

7.1.2 culaCgOptions

Name Memory In/out Meaning
reserved host in reserved for future compatibility

7.2 Biconjugate Gradient (BiCG)

culaStatus cula{storage}Bicg{preconditioner}(
const culaIterativeConfig* config,
const culaBicgOptions* solverOpts,
{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);

culaDcsrBicg culaDcscBicg culaDcooBicg

culaDcsrBicgIlu0 culaDcscBicgIlu0 culaDcooBicgIlu0

culaDcsrBicgJacobi culaDcscBicgBlockjacobi culaDcooBicgJacobi

culaDcsrBicgBlockjacobi culaDcscBicgJacobi culaDcooBicgBlockjacobi

culaZcsrBicg culaZcscBicg culaZcooBicg

culaZcsrBicgIlu0 culaZcscBicgIlu0 culaZcooBicgIlu0

culaZcsrBicgJacobi culaZcscBicgBlockjacobi culaZcooBicgJacobi

culaZcsrBicgBlockjacobi culaZcscBicgJacobi culaZcooBicgBlockjacobi

This family of functions attempt to solve Ax = b using the conjugate gradient (BiCG) method where A is a square
matrix stored in a sparse matrix format format and x and b are dense vectors. While BiCG may converge for general
matrices, it is mathematically most suitable for symmetric systems that are not positive definite. For symmetric positive
definite systems, this method is identical to but considerably more expensive than CG.
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Solver Trait Value
matrix class General (Symmetric Preferred)

memory overhead 10n

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.

7.2.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaBicgOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure

7.2.2 culaBicgOptions

Name Memory In/out Meaning
avoidTranspose host in Avoids repeated transpose operations by creating a transposed copy of the

input matrix. May lead to improved speeds and accuracy at the expense of
memory and computational overheads.

7.3 Biconjugate Gradient Stabilized (BiCGSTAB)

culaStatus cula{storage}Bicgstab{preconditioner}(
const culaIterativeConfig* config,
const culaBicgstabOptions* solverOpts,
{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);

culaDcsrBicgstab culaDcscBicgstab culaDcooBicgstab

culaDcsrBicgstabIlu0 culaDcscBicgstabIlu0 culaDcooBicgstabIlu0

culaDcsrBicgstabJacobi culaDcscBicgstabBlockjacobi culaDcooBicgstabJacobi

culaDcsrBicgstabBlockjacobi culaDcscBicgstabJacobi culaDcooBicgstabBlockjacobi
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culaZcsrBicgstab culaZcscBicgstab culaZcooBicgstab

culaZcsrBicgstabIlu0 culaZcscBicgstabIlu0 culaZcooBicgstabIlu0

culaZcsrBicgstabJacobi culaZcscBicgstabBlockjacobi culaZcooBicgstabJacobi

culaZcsrBicgstabBlockjacobi culaZcscBicgstabJacobi culaZcooBicgstabBlockjacobi

This family of functions attempt to solve Ax = b using the conjugate gradient stabilized (BiCGSTAB) method where
A is a square matrix stored in a sparse matrix format format and x and b are dense vectors. This method was developed
to solve non-symmetric linear systems while avoiding the irregular convergence patterns of the Conjugate Gradient
Squared (CGS) method.

Solver Trait Value
matrix class General

memory overhead 10n

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.

7.3.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaBicgstabOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure

7.3.2 culaBicgstabOptions

Name Memory In/out Meaning
reserved host in reserved for future compatibility

7.4 Generalized Biconjugate Gradient Stabilized (L) (BiCGSTAB(L))

culaStatus cula{storage}Bicgstabl{preconditioner}(
const culaIterativeConfig* config,
const culaBicgstablOptions* solverOpts,
{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);
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culaDcsrBicgstabl culaDcscBicgstabl culaDcooBicgstabl

culaDcsrBicgstablIlu0 culaDcscBicgstablIlu0 culaDcooBicgstablIlu0

culaDcsrBicgstablJacobi culaDcscBicgstablBlockjacobi culaDcooBicgstablJacobi

culaDcsrBicgstablBlockjacobi culaDcscBicgstablJacobi culaDcooBicgstablBlockjacobi

culaZcsrBicgstabl culaZcscBicgstabl culaZcooBicgstabl

culaZcsrBicgstablIlu0 culaZcscBicgstablIlu0 culaZcooBicgstablIlu0

culaZcsrBicgstablJacobi culaZcscBicgstablBlockjacobi culaZcooBicgstablJacobi

culaZcsrBicgstablBlockjacobi culaZcscBicgstablJacobi culaZcooBicgstablBlockjacobi

This family of functions attempt to solve Ax = b using the conjugate gradient stabilized (BiCGSTAB(L)) method
where A is a square matrix stored in a sparse matrix format format and x and b are dense vectors. This method
extendeds the BiCG algorithm by adding an additional GMRES step with a restart value of L after each BiCGSTAB
iteration. In practice, this may help to smooth convergence - especially in cases where A has large complex eigenpairs.

Solver Trait Value
matrix class General

memory overhead n ∗ L + 8n

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.

7.4.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaBicgstablOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure

7.4.2 culaBicgstablOptions

Name Memory In/out Meaning
l host in restart value of the GMRES portion of the algorithm; directly related to

memory useage

7.5 Restarted General Minimum Residual (GMRES(m))

culaStatus cula{storage}Gmres{preconditioner}(
const culaIterativeConfig* config,
const culaGmresOptions* solverOpts,
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{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);

culaDcsrGmres culaDcscGmres culaDcooGmres

culaDcsrGmresIlu0 culaDcscGmresIlu0 culaDcooGmresIlu0

culaDcsrGmresJacobi culaDcscGmresJacobi culaDcooGmresJacobi

culaDcsrGmresBlockjacobi culaDcscGmresBlockjacobi culaDcooGmresBlockjacobi

culaZcsrGmres culaZcscGmres culaZcooGmres

culaZcsrGmresIlu0 culaZcscGmresIlu0 culaZcooGmresIlu0

culaZcsrGmresJacobi culaZcscGmresJacobi culaZcooGmresJacobi

culaZcsrGmresBlockjacobi culaZcscGmresBlockjacobi culaZcooGmresBlockjacobi

This family of functions attempt to solve Ax = b using the restarted general minimal residual GMRES(m) method
where A is a square matrix stored in a sparse matrix format and x and b are dense vectors. This method is implemented
using the modified Gram-Schmidt method for orthogonalization. When a preconditioner is specified, GMRES attempts
to minimize ||Mb−MAx||/||b|| opposed to ||b−Ax||/||b|| in the absence of a preconditioner.

The maximum iterations, specified by culaIterativeConfig, are in reference to the outer iteration count. The
maximum inner iteration count is specified by the restart value contained in the culaGmresOptions parameter.

Solver Trait Value
matrix class General

memory overhead n ∗m + 5n

Note that the total memory overhead is directly proportional to the restart value, and so care should be taken with this
parameter.

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.

7.5.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaGmresOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure
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7.5.2 culaMinresOptions

Name Memory In/out Meaning
reserved host in reserved for future compatibility

7.6 Minimum residual method (MINRES)

culaStatus cula{storage}Minres{preconditioner}(
const culaIterativeConfig* config,
const culaMinresOptions* solverOpts,
{preconditioner options},
int n, int nnz,
{storage parameters},
double* x, const double* b,
culaIterativeResult* result

);

culaDcsrMinres culaDcscMinres culaDcooMinres

culaDcsrMinresIlu0 culaDcscMinresIlu0 culaDcooMinresIlu0

culaDcsrMinresJacobi culaDcscMinresJacobi culaDcooMinresJacobi

culaDcsrMinresBlockjacobi culaDcscMinresBlockjacobi culaDcooMinresBlockjacobi

culaZcsrMinres culaZcscMinres culaZcooMinres

culaZcsrMinresIlu0 culaZcscMinresIlu0 culaZcooMinresIlu0

culaZcsrMinresJacobi culaZcscMinresJacobi culaZcooMinresJacobi

culaZcsrMinresBlockjacobi culaZcscMinresBlockjacobi culaZcooMinresBlockjacobi

This family of functions attempt to solve Ax = b using the minimum residual method MINRES method where A is
a square matrix stored in a sparse matrix format and x and b are dense vectors. When a preconditioner is specified,
MINRES attempts to minimize ||Mb−MAx||/||b|| opposed to ||b−Ax||/||b|| in the absence of a preconditioner.

Solver Trait Value
matrix class General

memory overhead 11n

The associated preconditioner is indicated by the function suffix. See Iterative Preconditioners for more information.
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7.6.1 Parameters

Param. Memory In/out Meaning
config host in configuration structure

solverOpts host in culaMinresOptions structure

precondOpts host in options for specified preconditioner

n host in number of rows and columns in the matrix; must be ≥ 0

nnz host in number of non-zero elements in the matrix; must be ≥ 0

{storage} host in sparse input matrix in corresponding storage format

x host out array of n data elements

b host in array of n data elements

result host out result structure

7.6.2 culaMinresOptions

Name Memory In/out Meaning
restart host in number of inner iterations at which point the algorithm restarts; directly related

to memory usage
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CHAPTER

EIGHT

PERFORMANCE AND ACCURACY

This chapter outlines many of the performance and accuracy considerations pertaining to the CULA Sparse library.
There are details regarding how to get the most performance out of your solvers and provide possible reasons why a
particular solver may be under performing.

8.1 Performance Considerations

8.1.1 Double Precision

All of the solvers in CULA Sparse perform calculations in double precision. While users of the NVIDIA GeForce
line may still see an appreciable speedup, we recommend using the NVIDIA Tesla line of compute cards with greatly
improved double precision performance.

Since double precision is required, a CUDA device supporting compute capability 1.3 is needed to use the CULA
Sparse library. At this time, single precision solvers are excluded.

8.1.2 Problem Size

The modern GPU is optimized to handle large, massively parallel problems with a high computation to memory access
ratio. As such, small problems with minimal parallelism will perform poorly on the GPU and are much better suited
for the CPU where they can reside in cache memory. Typical problem sizes worth GPU-acceleration are systems with
at least 10,000 unknowns and at least 30,000 non-zero elements.

8.1.3 Storage Formats

For storage and performance reasons, the compressed sparse row (CSR) format is preferred as many internal operations
have been optimized for this format. For other storage formats, CULA Sparse will invoke accelerated conversions
routines to convert to CSR internally. To measure this conversion overhead, inspect the overhead field of the timing
structure in the culaIterativeResult return structure. These conversion routines also require an internal buffer
of size nnz which for large problems may be more memory than is available on the GPU.

8.1.4 Preconditioner Selection

Proper preconditioner selection is necessary for minimizing the number of iterations required to solve a solution.
However, as mentioned in previous chapters, the preconditioning step does add additional work to every iteration.
In some cases this additional work may end up being a new bottleneck and improved overall performance may be
obtained using a preconditioner that takes more steps to converge, but the overall runtime is actually lower. As such,
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we recommend analyzing multiple preconditioner methods and looking at the total runtime as well the number of
iterations required.

8.2 Accuracy Considerations

8.2.1 Numerical Precision

Iterative methods are typically very sensitive to numerical precision. Therefore, different implementations of the same
algorithm may take a different number of iterations to converge to the same solution. This is as expected when dealing
with the non-associative nature of floating point computations.

8.2.2 Relative Residual

Unless otherwise specified, all of CULA Sparse’s iteration calculations are done with regards to a residual relative to
the norm of the right hand side of the linear system. The defining equation for this is ||b−Ax||/||b||.
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CHAPTER

NINE

API EXAMPLE

This section shows a very simple example of how to use the CULA Sparse API.

#include "culadist/cula_sparse.h"

int main()
{

// test data
const int n = 8;
const int nnz = 8;
double a[nnz] = { 1., 2., 3., 4., 5., 6., 7., 8. };
double x[n] = { 1., 1., 1., 1., 1., 1., 1., 1. };
double b[n];
int colInd[nnz] = { 0, 1, 2, 3, 4, 5, 6, 7 };
int rowInd[nnz] = { 0, 1, 2, 3, 4, 5, 6, 7 };

// character buffer used for results and error messages
char buf[256];

// status returned by each and every cula routine
culaStatus status;

// intialize cula sparse library
status = culaSparseInitialize();

// check for initialization error
if ( status != culaNoError )
{

culaGetErrorInfoString( status, culaGetErrorInfo(), buf, sizeof(buf) );
printf("%s\n", buf);
return;

}

// configuration structures
culaIterativeConfig config;
culaBicgOptions solverOpts;
culaJacobiOptions precondOpts;

// initialize values
status = culaIterativeConfigInit( &config );
status = culaBicgOptionsInit( &solverOpts );
status = culaJacobiOptionsInit( &precondOpts );

// configure specific parameters
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config.tolerance = 1.e-6;
config.maxIterations = 20;
config.indexing = 0;
config.debug = 1;

// result structure
culaIterativeResult result;

// call bicg with jacobi preconditioner
status = culaDcooBicgJacobi( &config, &solverOpts, &precondOpts, n, nnz, a, colInd, rowInd, x, b, &result );

// see if solver failed for a non-data related reason
if ( status != culaNoError && status != culaDataError )
{

culaGetErrorInfoString( status, culaGetErrorInfo(), buf, sizeof(buf) );
printf("%s\n", buf);
return;

}

// print result string
culaIterativeResultString( &result, buf, sizeof(buf) );
printf("%s\n", buf);

return;
}
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CHAPTER

TEN

CONFIGURING YOUR ENVIRONMENT

This section describes how to set up CULA Sparse using common tools, such as Microsoft® Visual Studio®, as well
as command line tools for Linux and Mac OS X.

10.1 Microsoft Visual Studio

This section describes how to configure Microsoft Visual Studio to use CULA Sparse. Before following the steps
within this section, take note of where you installed CULA Sparse (the default is C:\Program Files\CULA\S#). To set
up Visual Studio, you will need to set both Global- and Project-level settings. Each of these steps is described in the
sections below.

10.1.1 Global Settings

When inside Visual Studio, navigate to the menu bar and select Tools > Options. A window will open that offers
several options; in this window, navigate to Projects and Solutions > VC++ Directories. From this dialog you will
be able to configure global executable, include, and library paths, which will allow any project that you create to use
CULA Sparse.

The table below specifies the recommended settings for the various directories that the VC++ Directories dialog makes
available. When setting up your environment, prepend the path of your CULA Sparse installation to each of the entries
in the table below. For example, to set the include path for a typical installation, enter C:\Program Files\CULA\include
for the Include Files field.

Option Win32 x64
Executable Files bin bin64

Include Files include include

Library Files lib lib64

With these global settings complete, Visual Studio will be able to include CULA Sparse files in your application.
Before you can compile and link an application that uses CULA Sparse, however, you will need to set up your project
to link CULA Sparse.

10.1.2 Project Settings

To use CULA Sparse, you must instruct Visual Studio to link CULA Sparse to your application. To do this, right-click
on your project and select Properties. From here, navigate to Configuration Properties > Linker > Input. In the
Additional Dependencies field, enter “cula_core.lib cula_sparse.lib”.
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On the Windows platform, CULA Sparse’s libraries are distributed as a dynamic link library (DLL) (cula_sparse.dll)
and an import library (cula_sparse.lib), located in the bin and lib directories of the CULA Sparse installation, respec-
tively. By Linking cula_sparse.lib, you are instructing Visual Studio to make an association between your application
and the CULA Sparse DLL, which will allow your application to use the code that is contained within the CULA
Sparse DLL.

10.1.3 Runtime Path

CULA Sparse is built as a dynamically linked library, and as such it must be visible to your runtime system. This
requires that cula_sparse.dll and its supporting dll’s are located in a directory that is a member of your system’s
runtime path. On Windows, you may do one of several things:

1. Add CULASPARSE_BIN_PATH_32 or CULASPARSE_BIN_PATH_64 to your PATH environment variable.

2. Copy cula_sparse.dll and its supporting dll’s to the working directory or your project’s executable.

10.2 Linux / Mac OS X - Command Line

On a Linux system, a common way of building software is by using command line tools. This section describes how
a project that is command line driven can be configured to use CULA Sparse.

10.2.1 Configure Environment Variables

The first step in this process is to set up environment variables so that your build scripts can infer the location of CULA
Sparse.

On a Linux or Mac OS X system, a simple way to set up CULA Sparse to use environment variables. For example, on
a system that uses the bourne (sh) or bash shells, add the following lines to an appropriate shell configuration file (e.g.
.bashrc).

export CULASPARSE_ROOT=/usr/local/culasparse
export CULASPARSE_INC_PATH=$CULASPARSE_ROOT/include
export CULASPARSE_BIN_PATH_32=$CULASPARSE_ROOT/bin
export CULASPARSE_BIN_PATH_64=$CULASPARSE_ROOT/bin64
export CULASPARSE_LIB_PATH_32=$CULASPARSE_ROOT/lib
export CULASPARSE_LIB_PATH_64=$CULASPARSE_ROOT/lib64

(where CULASPARSE_ROOT is customized to the location you chose to install CULA Sparse)

After setting environment variables, you can now configure your build scripts to use CULA Sparse.

Note: You may need to reload your shell before you can use these variables.

10.2.2 Configure Project Paths

This section describes how to set up the gcc compiler to include CULA Sparse in your application. When compiling
an application, you will typically need to add the following arguments to your compiler’s argument list:
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Item Command
Include Path -I$CULASPARSE_INC_PATH

Library Path (32-bit arch) -L$CULASPARSE_LIB_PATH_32

Library Path (64-bit arch) -L$CULASPARSE_LIB_PATH_64

Libraries to Link against -lcula_core -lcula_sparse

For a 32-bit compile:

gcc ... -I$CULASPARSE_INC_PATH -L$CULASPARSE_LIB_PATH_32 ...
-lcula_core -lcula_sparse -lcublas -lcudart -lcusparse ...

For a 64-bit compile (not applicable to Mac OS X):

gcc ... -I$CULASPARSE_INC_PATH -L$CULASPARSE_LIB_PATH_64 ...
-lcula_core -lcula_sparse -lcublas -lcudart -lcusparse ...

10.2.3 Runtime Path

CULA Sparse is built as a shared library, and as such it must be visible to your runtime system. This requires that
CULA Sparse’s shared libraries are located in a directory that is a member of your system’s runtime library path. On
Linux, you may do one of several things:

1. Add CULASPARSE_LIB_PATH_32 or CULASPARSE_LIB_PATH_64 to your LD_LIBRARY_PATH envi-
ronment variable.

2. Edit your system’s ld.so.conf (found in /etc) to include either CULASPARSE_LIB_PATH_32 or CULAS-
PARSE_LIB_PATH_64.

On the Mac OS X platform, you must edit the DYLD_LIBRARY_PATH environment variable for your shell, as above.

10.3 Checking That Libraries are Linked Correctly

#include <cula.h>

int MeetsMinimumCulaRequirements()
{

int cudaMinimumVersion = culaGetCudaMinimumVersion();
int cudaRuntimeVersion = culaGetCudaRuntimeVersion();
int cudaDriverVersion = culaGetCudaDriverVersion();
int cublasMinimumVersion = culaGetCublasMinimumVersion();
int cublasRuntimeVersion = culaGetCublasRuntimeVersion();
int cusparseMinimumVersion = culaGetCusparseMinimumVersion();
int cusparseRuntimeVersion = culaGetCusparseRuntimeVersion();

if(cudaRuntimeVersion < cudaMinimumVersion)
{

printf("CUDA runtime version is insufficient; "
"version %d or greater is required\n", cudaMinimumVersion);

return 0;
}

if(cudaDriverVersion < cudaMinimumVersion)
{
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printf("CUDA driver version is insufficient; "
"version %d or greater is required\n", cudaMinimumVersion);

return 0;
}

if(cublasRuntimeVersion < cublasMinimumVersion)
{

printf("CUBLAS runtime version is insufficient; "
"version %d or greater is required\n", cublasMinimumVersion);

return 0;
}

if(cusparseRuntimeVersion < cusparseMinimumVersion)
{

printf("CUSPARSE runtime version is insufficient; "
"version %d or greater is required\n", cusparseMinimumVersion);

return 0;
}

return 1;
}
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ELEVEN

COMMON ERRORS

This chapter provides solutions to errors commonly encountered when using the CULA Sparse library.

As a general note, whenever an error is encountered, consider enabling debugging mode. The configuration parameter
offers a debugging flag that, when set, causes CULA Sparse to perform many more checks than it would normally.
These checks can be computationally expensive and so are not enabled on a default run. These checks may highlight
the issue for you directly, saving you from having to do more time consuming debugging. Debugging output will
occur as either a culaStatus return code (i.e., a malformed matrix may be printed to the console, or returned via
the result culaBadStorageFormat or via the result structure.

11.1 Argument Error

Problem

A function’s culaStatus return code is equal to culaArgumentError.

Description

This error indicates that one of your parameters to your function is in error. The culaGetErrorInfo function will
report which particular parameter is in error. Typical errors include invalid sizes or null pointers.

For a readable string that reports this information, use the culaGetErrorInfoString() function. Whereas
normal mode will not indicate why the argument is in error, debugging mode may report more information.

Solution

Check the noted parameter against the routine’s documentation to make sure the input is valid.

11.2 Malformed Matrix

Problem

A function’s culaStatus return code is equal to culaBadStorageFormat.

Description

This error indicates that the set of inputs describing a sparse matrix is somehow malformed. This error code is
principally encountered with the configuration structure has activated the “debug” field by setting it to 1. For a
readable string that reports this information, use the culaGetErrorInfoString() function. Whereas normal
mode will not indicate why the argument is in error, debugging mode may report more information.

There are many conditions which can trigger this, of which a few common examples are listed below.

• For 0-based indexing, any entry in the row or column values is less than zero or greater than n− 1
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• For 1-based indexing, any entry in the row or column values is less than one or greater than n

• Duplicated indices

• Entries in an Index array are not ascending

• The n + 1 element of an Index array is not set properly; ie it does not account for all nnz elements

There are many others, and the above may not be true for all matrix types.

Solution

Check the matrix data against the documentation for matrix storage types to ensure that it meets any necessary criteria.

11.3 Data Errors

Upon a culaDataError return code, it is possible to obtain more information by examining the
culaIterativeFlag within the culaIterativeResult structure. This will indicate a problem with of the
following errors:

11.3.1 Maximum Iterations Reached

Problem

A function’s culaStatus return code is equal to culaDataError and the culaIterativeFlag is indicating
culaMaxItReached.

Description

This error indicates that the solver has reached a maximum number of iterations before the an answer within the given
tolerance was reached.

Solution

Increase the iteration count or lower the desired tolerance. Also, the given solver and/or preconditioner might not be
appropriate for your data. If this is the case, try a different solver and/or preconditioner. It is also possible that the
input matrix may not be solvable with any of the methods available in CULA Sparse.

This might also be a desirable outcome in the case that the user is seeking the best possible answer within a budgeted
number of iterations. In this case, the “error” can be safely ignored.

11.3.2 Preconditioner Failure

Problem

A function’s culaStatus return code is equal to culaDataError and the culaIterativeFlag is indicating
culaPreconditionerFailed.

Description

The preconditioner failed to generate and no iterations were attempted. This error is usually specific to different
preconditioner methods but typically indicates that there is either bad data (i.e., malformed matrix) or a singular
matrix. See the documentation for the preconditioner used, as it may specify certain conditions which must be met.

Solution

More information can be obtained through the culaIterativeResultString() function. In many cases the
input matrix is singular and factorization methods such as ILU0 are not appropriate. In this case, try a different
preconditioner and check that the structure of your matrix is correct.
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11.3.3 Stagnation

Problem

A function’s culaStatus return code is equal to culaDataError and the culaIterativeFlag is indicating
culaStagnation.

Description

The selected iterative solver has stagnated by calculating the same residual for multiple iterations in a row. The solver
has exited early because a better solution cannot be calculated.

Solution

A different iterative solver and/or preconditioner may be necessary. It is also possible that the input matrix may not be
solvable with any of the methods available in CULA Sparse.

It is implicit when this error is issued that the current residual still exceeds the specified tolerance, but the result may
still be usable if the user is looking only for a “best effort” solution. In that case, this “error” can be disregarded.

11.3.4 Scalar Out of Range

Problem

A function’s culaStatus return code is equal to culaDataError and the culaIterativeFlag is indicating
culaScalarOutOfRange.

Description

The selected iterative solver has encountered an invalid floating point value during calculations. It is possible the
method has broken down and isn’t able to solve the provided linear system.

Solution

Therefore, a different iterative solver and/or preconditioner may be necessary. It is also possible that the input matrix
may not be solvable with any of the methods available in CULA Sparse. Also, it is possible the input matrix has
improperly formed data.

11.3.5 Unknown Iteration Error

Problem

A function’s culaStatus return code is equal to culaDataError and the culaIterativeFlag is indicating
culaUnknownIterationError.

Description

The selected iterative solver has encountered an unknown error.

Solution

This error is unexpected and should be reported the CULA Sparse development team. Please provide the full output of
culaIterativeResultString() and culaIterativeConfigString().

11.4 Runtime Error

Problem

A function’s culaStatus return code is equal to culaRuntimeError.
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Description

An error associated with the CUDA runtime library has occurred. This error is commonly seen when trying to pass a
device pointer into a function that is expected a host pointer or vise-versa.

Solution

Make sure device pointers aren’t being used in a host function or vise-versa.

11.5 Initialization Error

Problem

A function’s culaStatus return code is equal to culaNotInitialized.

Description

This error occurs when the CULA Sparse library has not yet been initialized.

Solution

Call culaSparseInitialize() prior to any other API calls. Exceptions include device functions and helper
routines.

11.6 No Hardware Error

Problem

A function’s culaStatus return code is equal to culaNoHardware.

Description

No CUDA capable device was detected in the system.

Solution

Be sure that your system has a CUDA capable NVIDIA GPU device; a full list of CUDA GPUs can be obtained through
NVIDIA’s webpage: http://developer.nvidia.com/cuda-gpus

11.7 Insufficient Runtime Error

Problem

A function’s culaStatus return code is equal to culaInsufficientRuntime.

Description

When explicitly mixing CUDA and CULA functionality, the CUDA runtime must be at least equal to the CUDA runtime
used to build CULA.

Solution

Upgrade your CUDA install to the version that CULA has been built against. This is typically indicated immediately
after the CULA version. If upgrading CUDA is not possible, select an older CULA install with an appropriate CUDA
runtime.
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11.8 Insufficient Compute Capability Error

Problem

A function’s culaStatus return code is equal to culaInsufficientComputeCapability.

Description

The CULA Sparse library requires a minimum CUDA Compute Capability of 1.3 for double precision.

Solution

Be sure that your system has a CUDA device with at least Compute Capability 1.1; a full list of CUDA GPUs can be
obtained through NVIDIA’s webpage: http://developer.nvidia.com/cuda-gpus

11.9 Insufficient Memory Error

Problem

A function’s culaStatus return code is equal to culaInsufficientMemory.

Description

Insufficient GPU memory was available to complete the requested operation. This includes storage for the input data,
output data, and intermediates required by the solver.

Solution

Try another solver and/or preconditioner with a lower memory requirement. See each routine for details on how much
memory is required to store the intermediate values.

CULA Sparse Reference Manual
www.culatools.com

39

http://developer.nvidia.com/cuda-gpus


CHAPTER

TWELVE

SUPPORT OPTIONS

If none of the entries in the Common Errors chapter solve your issue, you can seek technical support.

EM Photonics provides a user forum at http://www.culatools.com/forums at which you can seek help. Additionally, if
your license level provides direct support, you may contact us directly.

When reporting a problem, make sure to include the following information:

• System Information

• CULA Version

• Version of NVIDIA® CUDA Toolkit installed, if any

• Problem Description (with code if applicable)

12.1 Matrix Submission Guidelines

Occasionally you may need to send us your sparse matrix so that we can work with it directly. EM Photonics accepts
two different sparse matrix formats:

• Matlab sparse matrices (.mat)

• Matrix-market format (.mtx)

Matlab’s sparse matrices are stored in .mat files. Matlab matrices can be saved with the ‘save’ command or by selecting
a workspace variable and selecting ‘Save As’.

Matrix-market formats are discussed here: http://math.nist.gov/MatrixMarket/formats.html . This site contains rou-
tines for several languages for reading and writing to these file types.

For easy transfer to EM Photonics, please compress the matrix using one of .zip or .tar.gz compression methods.
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THIRTEEN

ROUTINE SELECTION FLOWCHARTS

Selecting the best sparse iterative solver and preconditioner is often a difficult decision. Very rarely can one simply
know which combination will converge quickest to find a solution within the given constraints. Often the best answer
requires knowledge pertaining to the structure of the matrix and the properties it exhibits. To help aid in the selection
of a solver and preconditioner, we have constructed two flow charts to help gauge which solver and preconditioner
might work best. Again, since there is no correct answer for any given system, we encourage users to experiment
with different solvers, preconditioners, and options. These flowcharts are simply designed to give suggestions, and not
absolute answers.
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13.1 Solver Selection Flowchart

Figure 13.1: This flowchart assists in solver selection for your application.
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13.2 Preconditioner Selection Flowchart

Figure 13.2: This flowchart assists in preconditioner selection for your application.
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CHANGELOG

14.1 Release S1 CUDA 4.0 (November 2, 2011)

• Feature: Improved speeds for all solvers

• Feature: Matrix reordering option; can lead to large perf gains for ILU

• Feature: MINRES solver

• Feature: Fully compatible with CULA R13 and above

• Feature: Option to disable stagnation checking for more speed

• Feature: Added iterativeBenchmark example for evaluating the performance of different solvers and options

• Improved: Result printout will show if useBestAnswer was invoked

• Changed: Header renamed to cula_sparse.h; transitional header available

• Notice: Integrated LGPL COLAMD package; see src folder and license

14.2 Release S1 Beta 2 CUDA 4.0 (September 27, 2011)

• Feature: BiCGSTAB solver

• Feature: BiCGSTAB(L) solver

• Feature: Complex (Z) data types available for all solvers

• Feature: Fortran module added

• Feature: Configuration parameter to return best experienced solution

• Feature: Maximum runtime configuration parameter

• Feature: New example for Fortran interface

• Feature: New example for MatrixMarket data

• Changed: Must link two libraries now (cula_sparse and cula_core)

14.3 Release S1 Beta 1 CUDA 4.0 (August 24, 2011)

• Feature: Cg, BiCg, and GMRES solvers
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• Feature: CSC, CSR, COO storage formats

• Feature: Jacobi, Block Jacobi, ILU0 preconditioners

• Feature: Double precision only

• Feature: Support for all standard CUDA platforms; Linux 32/64, Win 32/64, OSX
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