CULA(|tools

CULA Reference Manual

www.culatools.com
Release 2.1

EM Photonics, Inc.
www.emphotonics.com

August 31, 2010

2

3

CONTENTS

1 Introduction 1
1.1 Attributions L e e e e e e e e e e e e e 1
Framework Functions 2
2.1 culalnitialize e e e e e e e 2
2.2 culaShutdown L e e e e e e e 2
2.3 culaGetLastStatus e e e e e e e e e 2
2.4 culaGetStatusSIring v . e 2
2.5 culaGetErrorInfo L e 3
2.6 culaFreeBuffers 3
2.7 culaGetDeviceCount e e e e e e e e e 3
2.8 culaSelectDevice e 3
2.9 culaGetExecutingDevice e e e e e e e e e e e 4
2.10 culaGetDevicelnfo e e 4
2.11 culaGetOptimalPitch e 4
2.12 culaDeviceMalloc e e e e 4
2.13 culaDeviceFree L e 5
Linear Algebra Routines 6
3.1 DataTypes o e e 6
3.2 Host Interface Compared To Device Interface, 6
3.3 Noteon Leading DImensions o v v i i vt i it e e e e e e e 6
3.4 BDSQR . . . e 7
3.5 GEBRD. e e 9
3.6 GEEV . . . e 12
377 GEHRD e 15
3.8 GELQF e 17
3.9 GELS 18
3.10 GEQLF e e e e 20
3.1 GEQRFE e e 22
3.12 GEQRS . . . e 23
3.13 GERQF s 25
314 GESV . o e e s 27
3.15 GESV (Iteratively Refined) o . e e 28
3.16 GESVD e e e 31
3.17 GETRF e 33
3.18 GETRI e 35
3.19 GETRS . . . e 36
3.20 GGLSE e e e 38

321 GGRQF. . . e e 40

322 ORGBR/UNGBR 43
323 ORGHR/UNGHR e e e e 44
324 ORGLQ/UNGLQ e e e e e e e 46
3.25 ORGQL/UNGQL e e e 47
326 ORGQR/UNGQR 49
3.27 ORGRQ/UNGRQ 50
328 ORMLQ/UNMLAQ e e e s e e 52
329 ORMOQL/UNMOQL e e 54
330 ORMOQR/UNMQR e 56
331 ORMRQ/UNMRQ 58
332 POSV .« o 61
333 POTRF 62
334 POTRS . . . 64
335 STEBZ o e e 65
336 STEQR 68
337 SYEV/HEEV 70
338 SYEVX/HEEVX 71
339 SYRDB/HERDB e 74
340 SYTRD/HETRD o o e e e 77
341 TRTRI . . . o e 77
342 TRTRS . . 78
Differences Between CULA and LAPACK 81
4.1 No Workspace Parameters L e e e 81
Common Errors 82
5.1 PIVOLATITAys oo oo e e e 82
5.2 Padding With Zeros e 82

CHAPTER
ONE

INTRODUCTION

This guide documents CULA’s Programming Interface. CULA™ is an implementation of the Linear Algebra PACK-
age (LAPACK) interface for CUDA™-enabled NVIDIA® graphics processing units (GPUs). It is a companion docu-
ment to the CULA Programmer’s Guide.

This guide is split into the following sections:

e Framework Functions - These section documents functions are used in initializing CULA, shutting it down, and
querying information about errors.

* Linear Algebra Routines - This section documents the Linear Algebra functions that CULA provides

* Differences Between CULA and LAPACK - This section lists some of the ways in which CULA differs from
LAPACK.

* Common Errors - This section lists some of the common errors that apply to usage of several functions.

1.1 Attributions

This work has been made possible by the NASA Small Business Innovation Research (SBIR) program. We recognize
NVIDIA for their support.

CULA is built on NVIDIA CUDA 3.1 and NVIDIA CUBLAS.

CULA uses the Intel® Math Kernel Library (MKL) internally. For more information, please see the MKL product
page at http://www.intel.com/software/products/mkl.

The original version of LAPACK from which CULA implements a similar interface can be obtained at
http://www.netlib.org/lapack. Much of this Reference Manual is based upon the documentation released with netlib.

LA/|tools 1

http://www.nvidia.com/object/cuda_home.html
http://www.intel.com/software/products/mkl
http://www.netlib.org/lapack

CHAPTER
TWO

FRAMEWORK FUNCTIONS

This section documents the functions that are used in initializing CULA, shutting it down, and querying information

about errors.

2.1 culalnitialize

Description

Initializes CULA Must be called before using any other function. Some functions have an exception to this rule:

culaGetDeviceCount, culaSelectDevice

Returns

culaNoError on a successful initialization or the culaStatus enum that specifies an error

2.2 culaShutdown

Description

Shuts down CULA Must be called to deallocate CULA internal data

2.3 culaGetLastStatus

Description
Returns the last status code returned from a CULA function
Returns

The last CULA status code

2.4 culaGetStatusString

Description
Associates a culaStatus enum with a readable error string

Parameters

LA |tools

e e - A culaStatus error code
Returns

A string that corresponds with the specified culaStatus enum

2.5 culaGetErrorinfo

Description
This function is used to provide extended functionality that LAPACK’s info parameter typically provides
Returns

Extended information about the last error or zero if it is unavailable

2.6 culaFreeBuffers

Description

Releases any memory buffers stored internally by CULA

2.7 culaGetDeviceCount

Description
Reports the number of GPU devices Can be called before culalnitialize
Parameters
* num - Pointer to receive the number of devices
Returns

culaNoError on sucess, culaArgumentError on invalid pointer

2.8 culaSelectDevice

Description
Selects a device with which CULA will operate To bind without error, this function must be called before culalnitialize
Parameters
* dev - Specifies the device id of the GPU device
Returns

culaNoError on sucess, culaArgumentError on an invalid device id, culaRuntimeError if the running thread has already
been bound to a GPU device

cJULAd|tools 3

2.9 culaGetExecutingDevice

Description
Reports the id of the GPU device executing CULA
Parameters

* dev - Pointer to receive the GPU device number
Returns

culaNoError on sucess, culaArgumentError on invalid pointer

2.10 culaGetDevicelnfo

Description
Prints information to a buffer about a specified device
Parameters
* dev - CUDA device id to print information about
* buf - Pointer to a buffer into which information will be printed
* bufsize - The size of buf, printed information will not exceed bufsize
Returns

culaNoError on sucess, culaArgumentError on invalid buf pointer, invalid device id, or invalid bufsize

2.11 culaGetOptimalPitch

Description
Calculates a pitch that is optimal for CULA when using the device interface
Parameters
* pitch - The optimal pitch for the specified matrix in elements (where *pitch >= rows)
* rows - The number of rows of the matrix
¢ cols - The number of columns of the matrix
* elesize - The size in bytes of the desired element
Returns

culaNoError on successful allocation, culalnsufficientMemory on failure

2.12 culaDeviceMalloc

Description
Allocates memory on the device in a pitch that is optimal for CULA

Parameters

cULA|tools

mem - Pointer to which a newly allocated buffer will be assigned
pitch - The pitch of the allocation in elements (where *pitch >= rows)
rows - The number of rows of the matrix

cols - The number of columns of the matrix

elesize - The size in bytes of the desired element

Returns

culaNoError on successful allocation, culalnsufficientMemory on failure

2.13 culaDeviceFree

Description

Frees memory that has been allocated with culaDeviceMalloc

Parameters

mem - Pointer to a buffer that is to be freed

Returns

culaNoError on successful free, culaArgumentError on failure

zULd|tools

CHAPTER
THREE

LINEAR ALGEBRA ROUTINES

This section documents the Linear Algebra functions that CULA provides. For each function, a high-level description
of that function is given, followed by a listing of each of the function’s parameters. Where applicable, differences from
LAPACK will also be listed.

3.1 Data Types

CULA provides 4 data types with which you can perform computations, with one function for each data type. Rather
than document each routine separately, this guide includes only one reference for each of the functions, and instead
documents the differences between each of these functions (if any) in the generic function description.

Most functions only take pointers to one data type that applies to the S, D, C, or Z variant of the function in question.
For the majority of functions, these parameters will be denoted as S/D/C/Z. For those functions that have parameters
that differ from their variant, the difference will be noted. For example, for a ‘C/Z’ function that has real (non-complex)
parameters, these parameters will be denoted as S/D (although others may be denoted as S/D/C/Z). For an ‘S’ function
that has complex parameters, these parameters will be denoted as (C/Z).

Symbol | Host Interface Type Device Interface Type

S culaFloat culaDeviceFloat

D culaDouble culaDeviceDouble

C culaFloatComplex culaDeviceFloatComplex
zZ culaDoubleComplex | culaDeviceDoubleComplex

3.2 Host Interface Compared To Device Interface

For Host interface functions, all matrices/vectors are submitted as pointers to host data. For the Device inter-
face, all matrices/vectors are submitted as pointers to GPU data, as allocated by either the CUDA toolkit or via
culaDeviceMalloc (available in CULA premium). All Device interface routines have the word Device as part of
the function name; all other functions are Host interface.

There are some pointer arguments for which this not the case; these will often be output scalar arguments rather than
matrices or vectors. These are denoted as “(type) Pointer, always host” etc.

3.3 Note on Leading Dimensions

All LAPACK matrices are specified as a pointer and a “leading dimension” parameter. The leading dimension de-
scribes the allocated size of the matrix, which may be equal to or larger than the actual matrix height. Thus if a matrix
input is described as size “(LDA,N)” it simply means that the storage for the matrix is at least LDA x N in size. The

LA |tools)

section of that array that contains valid data will be described by other parameters, often M and N. There will typically
be a note differentiating between these.

3.4 BDSQR

CULA Routines
The BDSQR functionality is implemented by the following CULA routines:

* Host Memory

culaSbdsgr

culaDbdsqgr

culaCbdsgr

culaZbdsqgr

culaBdsqgr (C++ style, type overloaded)
* Device Memory
— culaDeviceSbdsqgr
— culaDeviceDbdsqgr
— culaDeviceCbdsqgr
— culaDeviceZbdsqgr
— culaDeviceBdsqgr (C++ style, type overloaded)
Description

BDSQR computes the singular values and, optionally, the right and/or left singular vectors from the singular value de-
composition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B using the implicit zero-shift QR algorithm.
The SVD of B has the form

B=Q*S*PT

where S is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular vectors, and P is an
orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns U*Q
instead of Q, and, if right singular vectors are requested, this subroutine returns PT * VT instead of PT, for given
real input matrices U and VT. When U and VT are the orthogonal/unitary matrices that reduce a general matrix A to
bidiagonal form: A =U * B * VT, as computed by GEBRD, then

A=U*Q)*S* (PT*VT)
is the SVD of A. Optionally, the subroutine may also compute QT * C for a given real input matrix C.

See “Computing Small Singular Values of Bidiagonal Matrices With Guaranteed High Relative Accuracy,” by J.
Demmel and W. Kahan, LAPACK Working Note #3 (or STAM J. Sci. Statist. Comput. vol. 11, no. 5, pp. 873-912,
Sept 1990) and “Accurate singular values and differential qd algorithms,” by B. Parlett and V. Fernando, Technical
Report CPAM-554, Mathematics Department, University of California at Berkeley, July 1992 for a detailed description
of the algorithm.

Parameters
* uplo

— Type: char

LA/|tools 7

* ncvt

* nru

®* nce

e vt

— Direction: Input
= ‘U’: B is upper bidiagonal;

= ‘L’: B is lower bidiagonal.

— Type: int
— Direction: Input

The order of the matrix B. N >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix VT. NCVT >= 0.

— Type: int
— Direction: Input

The number of rows of the matrix U. NRU >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix C. NCC >= 0. NCC > 0 is currently not supported and will
return culaFeatureNotImplemented.

— Type: S/D Pointer
— Direction: Input/Output
— Dimension: (N)
On entry, the n diagonal elements of the bidiagonal matrix B.

On exit, if culaNoError is returned, the singular values of B in decreasing order.

— Type: S/D Pointer
— Direction: Input/Output
— Dimension: (N-1)
On entry, the N-1 offdiagonal elements of the bidiagonal matrix B.

On exit, if culaNoError is returned, E is destroyed; if culaDataError is returned, D and E will contain
the diagonal and superdiagonal elements of a bidiagonal matrix orthogonally equivalent to the one
given as input.

— Type: S/D/C/Z Pointer

— Direction: Input/Output

LA |tools

— Dimension: (LDVT, NCVT)
On entry, an N-by-NCVT matrix VT.
On exit, VT is overwritten by PT * VT. Not referenced if NCVT = 0.
e ldvt
— Type: int
— Direction: Input

The leading dimension of the array VT. LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT =0.

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDU, N)
On entry, an NRU-by-N matrix U.
On exit, U is overwritten by U * Q.
Not referenced if NRU = 0.
* ldu
— Type: int
— Direction: Input

The leading dimension of the array U. LDU >= max(1,NRU).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDC, NCC)
On entry, an N-by-NCC matrix C.
On exit, C is overwritten by QT * C.
Not referenced if NCC = 0.
* ldc
— Type: int
— Direction: Input
The leading dimension of the array C. LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
Differences from LAPACK

See No Workspace Parameters section.

3.5 GEBRD

CULA Routines
The GEBRD functionality is implemented by the following CULA routines:

LA |tools

* Host Memory

culaSgebrd
culaDgebrd
culaCgebrd
culaZgebrd

culaGebrd (C++ style, type overloaded)

¢ Device Memory

culaDeviceSgebrd
culaDeviceDgebrd
culaDeviceCgebrd
culaDeviceZgebrd

culaDeviceGebrd (C++ style, type overloaded)

Description

GEBRD reduces a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal/unitary
transformation: QT * A * P =B.

If m >=n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

Parameters

°m

— Type: int
— Direction: Input

The number of rows in the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns in the matrix A. N >=0.

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the M-by-N general matrix to be reduced.

On exit, if m >= n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal
matrix B; the elements below the diagonal, with the array TAUQ, represent the orthogonal/unitary
matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with
the array TAUP, represent the orthogonal/unitary matrix P as a product of elementary reflectors;

On exit, if m < n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal
matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the orthogo-
nal/unitary matrix Q as a product of elementary reflectors, and the elements above the diagonal, with
the array TAUP, represent the orthogonal/unitary matrix P as a product of elementary reflectors. See

Further Details.
LA |tools

10

* lda
— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

— Type: S/D Pointer
— Direction: Output
— Dimension: (min (M, N))

The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i).

— Type: S/D Pointer
— Direction: Output
— Dimension: (min (M, N)-1)

The off-diagonal elements of the bidiagonal matrix B: if m >=n, E(i) = A(i,i+1) fori = 1,2,....n-1; if
m<n, E(i) = A(i+1,i) fori=1,2,....m-1.

* tauq
— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (min (M, N))

The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q. See
Further Details.

* taup
- Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (min (M, N))

The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix P. See
Further Details.

Further Details
The matrices Q and P are represented as products of elementary reflectors:
If m >=n,
Q=H(1)H2)...H®m)and P=G(1) G(2). .. G(n-1)
Each H(i) and G(i) has the form:
H@{)=1-tauq * v * v’ and G(i) =1 - taup *u * v’

where tauq and taup are real scalars, and v and u are real vectors; v(1:i-1) =0, v(i) = 1, and v(i+1:m) is stored on exit
in A(i+1:m,i); u(1:1) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in TAUQ() and taup in
TAUPQ).

If m<n,

Q=H(1)H®)...Hm-1)and P=G(1) GQ2) . . . G(m)

LA|tools y

Each H(i) and G(i) has the form:
H@G)=1-tauq * v * v’ and G(i) =1 - taup *u * v’

where tauq and taup are real scalars, and v and u are real vectors; v(1:1) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit
in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in
TAUPQ).

The contents of A on exit are illustrated by the following examples:

m= 6 and n = 5 (m > n): m=5andn = 6 (m < n):

d e ul ul ul
vl d e uz2 u2
vl v2 d e u3
vl v2 v3 d e
vl v2 v3 v4d d
vl v2 v3 v4 v5

d ul ul wul ul wul
e d u2 u2 u2 u2
vl e d u3 u3 u3
vl v2 e d ud u4
vl v2 v3 e d ub

()
()
()
()
()
()

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining H(i), and
ui an element of the vector defining G(i).

Differences from LAPACK

See No Workspace Parameters section.

3.6 GEEV

CULA Routines
The GEEV functionality is implemented by the following CULA routines:
* Host Memory
— culaSgeev
— culaDgeev
- culaCgeev
- culaZgeev
— culaGeev (C++ style, type overloaded)
* Device Memory
— culaDeviceSgeev
— culaDeviceDgeev
— culaDeviceCgeev
— culaDeviceZgeev
— culaDeviceGeev (C++ style, type overloaded)
Description

GEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right
eigenvectors.

The right eigenvector v(j) of A satisfies
A *v(j) = lambda(j) * v(j)

zULd|tools

12

where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u()f * A =lambda(j) * u(GH
where u(j)f denotes the conjugate transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Parameters
 jobvl
— Type: char
— Direction: Input
= ‘N’: left eigenvectors of A are not computed;
= ‘V’: left eigenvectors of A are computed.
* jobvr
— Type: char
— Direction: Input
= ‘N’: right eigenvectors of A are not computed;
= “V’: right eigenvectors of A are computed.
*n

— Type: int
— Direction: Input

The order of the matrix A. N >= 0.

*a
— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
* lda

— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
* wr (Real variants (S/D) only)
— Type: S/D Pointer
— Direction: Output
— Dimension: (N)
¢ wi (Real variants (S/D) only)

— Type: S/D Pointer

LA |tools

13

— Direction: Output
— Dimension: (N)

WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Com-
plex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive
imaginary part first.

e w (Complex variants (C/Z) only)

e vl

* ldvl

e ldvr

— Type: C/Z Pointer
— Direction: Output
— Dimension: (N)
W contains the computed eigenvalues.

Note: the wi and wr parameters only appear in the real (non-complex) variants of geev; in the
complex variants these are bundled into one w.

— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (LDVL, N)

If JOBVL = ‘V’, the left eigenvectors u(j) are stored one after another in the columns of VL, in the
same order as their eigenvalues.

If JOBVL = ‘N’, VL is not referenced.

For real variants (S/D): If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).

For complex variants (C/Z): u(j) = VL(:,j), the j-th column of VL.

— Type: int
— Direction: Input

The leading dimension of the array VL. LDVL >=1; if JOBVL = ‘V’, LDVL >=N.

— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (LDVR, N)

If JOBVR = “V’, the right eigenvectors v(j) are stored one after another in the columns of VR, in the
same order as their eigenvalues.

If JOBVR = ‘N’, VR is not referenced.

If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st
eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) -
i*VR(:,j+1).

For complex variants (C/Z): v(j) = VR(:,j), the j-th column of VR.

LA |tools)

— Type: int
— Direction: Input
The leading dimension of the array VR. LDVR >=1; if JOBVR = ‘V’, LDVR >=N.
Differences from LAPACK

See No Workspace Parameters section.

3.7 GEHRD

CULA Routines
The GEHRD functionality is implemented by the following CULA routines:
* Host Memory

culaSgehrd

culaDgehrd

culaCgehrd

culaZgehrd

culaGehrd (C++ style, type overloaded)
* Device Memory
— culaDeviceSgehrd
— culaDeviceDgehrd
— culaDeviceCgehrd
— culaDeviceZgehrd
— culaDeviceGehrd (C++ style, type overloaded)
Description

GEHRD reduces a real/complex general matrix A to upper Hessenberg form H by an unitary similarity transformation:
Q*A*Q=H.

Parameters
°n
— Type: int
— Direction: Input
The order of the matrix A. N >=0.
* ilo
— Type: int
— Direction: Input
e ihi

— Type: int

ZULA |tools 1

e lda

* tau

— Direction: Input

It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO
and IHI are normally set by a previous call to GEBAL; otherwise they should be set to 1 and N
respectively. See Further Details. 1 <= ILO <=IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the N-by-N general matrix to be reduced.

On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg
matrix H, and the elements below the first subdiagonal, with the array TAU, represent the unitary
matrix Q as a product of elementary reflectors. See Further Details.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (N-1)

The scalar factors of the elementary reflectors (see Further Details). Elements 1:1LO-1 and IHI:N-1
of TAU are set to zero.

Further Details

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form

HGl)=1-tau *v *v’

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = O;
v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAUQ).

The contents of A are illustrated by the following example, with n =7, ilo = 2 and ihi = 6:

on entry,

a

O oY YL

on exit,

a a h
a h
h h
v2 h
v2 v3
v2 v3 v4

(U UR RO
(VI CI RO
SN TRV R
(U CRU RO
U R TR U)
[a= e Hie e)
[ope e S Hie e
[oRe e S B EN e
[\ = g =)

LA|tools y

where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H,
and vi denotes an element of the vector defining H(i).

Differences from LAPACK

See No Workspace Parameters section.

3.8 GELQF

CULA Routines
The GELQF functionality is implemented by the following CULA routines:
* Host Memory
— culaSgelqgf
— culaDgelgf
— culaCgelqgf
- culaZgelgf
— culaGelqgf (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSgelgf
— culaDeviceDgelqgf
— culaDeviceCgelqgf
— culaDeviceZgelgf
— culaDeviceGelgf (C++ style, type overloaded)
Description
GELQF computes an LQ factorization of a real M-by-N matrix A: A=L * Q.
Parameters
°m
— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

°n
— Type: int
— Direction: Input
The number of columns of the matrix A. N >=0.
*a

— Type: S/D/C/Z Pointer

— Direction: Input/Output

ZULA |tools ¥

— Dimension: (LDA, N)
On entry, the M-by-N matrix A.

On exit, the elements on and below the diagonal of the array contain the m-by-min(m,n) lower trape-
zoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array
TAU, represent the orthogonal/unitary matrix Q as a product of elementary reflectors (see Further
Details).

* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,M).
e tau
— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (min (M, N))
The scalar factors of the elementary reflectors (see Further Details).
Further Details
The matrix Q is represented as a product of elementary reflectors
Q=H(k)...H(Q®)H(1), where k = min(m,n).
Each H(i) has the form
HGl) =1-tau *v *v’

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU().

Differences from LAPACK

See No Workspace Parameters section.

3.9 GELS

CULA Routines
The GELS functionality is implemented by the following CULA routines:
* Host Memory
— culaSgels

— culaDgels

culaCgels

culaZgels

culaGels (C++ style, type overloaded)
* Device Memory
— culaDeviceSgels

— culaDeviceDgels

LA|tools)

— culaDeviceCgels

— culaDeviceZgels

— culaDeviceGels (C++ style, type overloaded)
Description

GELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose,
using a QR or LQ factorization of A. It is assumed that A has full rank.

The following options are provided:

1. If TRANS = ‘N’ and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least
squares problem minimize Il B - A*XI.

2. If TRANS = ‘N’ and m < n: find the minimum norm solution of an underdetermined system A * X = B.
3. If TRANS = ‘T’ and m >= n: find the minimum norm solution of an undetermined system AT * X = B.

4. If TRANS = ‘T’ and m < n: find the least squares solution of an overdetermined system, i.e., solve the least
squares problem minimize Il B - AT * X |l

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns
of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.

Parameters
* trans
— Type: char
— Direction: Input
= ‘N’: the linear system involves A;
= “T’: the linear system involves AT.
m

— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

°n
— Type: int
— Direction: Input
The number of columns of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input
The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >=0.
°a

— Type: S/D/C/Z Pointer

— Direction: Input/Output

LA|tools)

— Dimension: (LDA, N)
On entry, the M-by-N matrix A.
On exit, if M >= N, A is overwritten by details of its QR factorization as returned by GEQRF’;

if M < N, A is overwritten by details of its LQ factorization as returned by GELQF.

e lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,M).
*b
— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the matrix B of right hand side vectors, stored columnwise; B is M-by-NRHS if TRANS =
‘N’, or N-by-NRHS if TRANS = “T".
On exit, if culaNoError is returned, B is overwritten by the solution vectors, stored columnwise:
if TRANS = ‘N’ and m >= n, rows 1 to n of B contain the least squares solution vectors; the residual
sum of squares for the solution in each column is given by the sum of squares of elements N+1 to M
in that column;
if TRANS = ‘N’ and m < n, rows 1 to N of B contain the minimum norm solution vectors;
if TRANS = “T” and m >=n, rows 1 to M of B contain the minimum norm solution vectors;
if TRANS = ‘T’ and m < n, rows 1 to M of B contain the least squares solution vectors; the residual
sum of squares for the solution in each column is given by the sum of squares of elements M+1 to N
in that column.
* 1db
— Type: int
— Direction: Input
The leading dimension of the array B. LDB >= MAX(1,M,N).
Differences from LAPACK

See No Workspace Parameters section.

3.10 GEQLF

CULA Routines
The GEQLF functionality is implemented by the following CULA routines:
* Host Memory
— culaSgeqlf
- culaDgeqlf

— culaCgeqglf

LA|tools 5

culazgeqlf
culaGeqlf (C++ style, type overloaded)

* Device Memory

culaDeviceSgeqlf
culaDeviceDgeqlf
culaDeviceCgeqlf
culaDeviceZgeqglf

culaDeviceGeql f (C++ style, type overloaded)

Description

GEQLF computes a QL factorization of a real/complex M-by-N matrix A: A=Q * L.

Parameters

°m

e lda

* tau

— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix A. N >= 0.

— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the M-by-N matrix A.

On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower
triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the
M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the or-
thogonal/unitary matrix Q as a product of elementary reflectors (see Further Details).

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

— Type: S/D/C/Z Pointer,
— Direction: Output
— Dimension: (min (M, N))

The scalar factors of the elementary reflectors (see Further Details).

LA|tools N

Further Details

The matrix Q is represented as a product of elementary reflectors
Q=H()...H(Q®)H(1), where k = min(m,n).
Each H(i) has the form

HGl) =1-tau *v *v’

where tau is a real/complex scalar, and v is a real/complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-
k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(I).

Differences from LAPACK

See No Workspace Parameters section.

3.11 GEQRF

CULA Routines

The GEQREF functionality is implemented by the following CULA routines:

* Host Memory

culasgeqrf
culaDgeqrf
culaCgeqrf
culaZgeqrf

culaGeqgrf (C++ style, type overloaded)

* Device Memory

culaDeviceSgeqrf
culaDeviceDgeqgrf
culaDeviceCgeqrf
culaDeviceZgeqrf

culaDeviceGeqgrf (C++ style, type overloaded)

Description

GEQRF computes a QR factorization of a real M-by-N matrix A: A=Q * R.

Parameters

°m

— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix A. N >= 0.

LA |tools

22

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper
trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the
array TAU, represent the orthogonal/unitary matrix Q as a product of min(m,n) elementary reflectors
(see Further Details).

* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,M).
e tau
— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (min (M, N))
The scalar factors of the elementary reflectors (see Further Details).
Further Details
The matrix Q is represented as a product of elementary reflectors
Q=H()H(®2)...Hk), where k = min(m,n).
Each H(i) has the form
HGl) =1-tau *v *v’

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAUQ).

Differences from LAPACK

See No Workspace Parameters section.

3.12 GEQRS

CULA Routines
The GEQRS functionality is implemented by the following CULA routines:

* Host Memory

culaSgeqgrs
— culaDgegrs
— culaCgeqgrs
— culaZgeqgrs

— culaGegrs (C++ style, type overloaded)

LA|tools N

* Device Memory
— culaDeviceSgeqgrs
— culaDeviceDgeqgrs
— culaDeviceCgeqrs
— culaDeviceZgeqrs
— culaDeviceGeqgrs (C++ style, type overloaded)
Description
Solve the least squares problem
min | A*X - B |l
using the QR factorization
A =Q*R
computed by GEQRF.
Parameters
°m
— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input
The number of columns of the matrix A. M >= N >= 0.
* nrhs
— Type: int
— Direction: Input

The number of columns of B. NRHS >= 0.

— Type: S/D/C/Z Pointer,
— Direction: Input
— Dimension: (LDA, N)
Details of the QR factorization of the original matrix A as returned by GEQRF.
* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= M.
e tau

— Type: S/D/C/Z Pointer,

LA |tools

24

— Direction: Input
— Dimension: (N)

Details of the orthogonal matrix Q.

*b
— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
* ldb

— Type: int
— Direction: Input
The leading dimension of the array B. LDB >= M.
Differences from LAPACK

See No Workspace Parameters section.

3.13 GERQF

CULA Routines
The GERQF functionality is implemented by the following CULA routines:
* Host Memory
— culaSgerqgf
— culaDgergf
— culaCgerqgf
- culaZgergf
— culaGerqgf (C++ style, type overloaded)
* Device Memory
— culaDeviceSgergf
— culaDeviceDgerqgf
— culaDeviceCgergf
— culaDeviceZgerqgf
— culaDeviceGergf (C++ style, type overloaded)
Description
GERQF computes an RQ factorization of a real M-by-N matrix A: A=R * Q.
Parameters

°m

zULd|tools

— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix A. N >= 0.

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the M-by-N matrix A.

On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the M-by-M up-
per triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain
the M-by-N upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the
orthogonal/unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details).

* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,M).
¢ tau
— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (min (M, N))
The scalar factors of the elementary reflectors (see Further Details).
Further Details
The matrix Q is represented as a product of elementary reflectors
Q=H()H(®?)...H(k), where k = min(m,n).
Each H(i) has the form
HG) =1-tau *v *v’

where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
in A(m-k+i,1:n-k+i-1), and tau in TAU().

Differences from LAPACK

See No Workspace Parameters section.

LA|tools 5

3.14 GESV

The GESV functionality is implemented by the following CULA routines:
* Host Memory
— culaSgesv
— culaDgesv
— culaCgesv
— culaZgesv
— culaGesv (C++ style, type overloaded)
* Device Memory
— culaDeviceSgesv
— culaDeviceDgesv
— culaDeviceCgesv
— culaDeviceZgesv
— culaDeviceGesv (C++ style, type overloaded)
Description
GESYV computes the solution to a real system of linear equations
A *X =B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is used to factor A as
A=P*L*U,

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then
used to solve the system of equations A * X = B.

Parameters
*n
— Type: int
— Direction: Input
The number of linear equations, i.e., the order of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

- Type: S/D/C/Z Pointer

— Direction: Input/Output

ZULA |tools ”

e lda

* ipiv

* 1db

— Dimension: (LDA, N)
On entry, the N-by-N coefficient matrix A.

On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are
not stored.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: int Pointer
— Direction: Output
— Dimension: (N)

The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row
IPIV().

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.

On exit, if culaNoError is returned, the N-by-NRHS solution matrix X.

— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,N).

Further Details

See Pivot Arrays section.

3.15 GESV (lteratively Refined)

The GESV (Iteratively Refined) functionality is implemented by the following CULA routines:

* Host Memory

— culaDsgesv

— culaZcgesv

— culaGesv (C++ style, type overloaded)

* Device Memory

culaDeviceDsgesv

culaDeviceZcgesv

zULA|tools

28

— culaDeviceGesv (C++ style, type overloaded)
Description
GESV computes the solution to a real/complex system of linear equations
A*X=B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

GESYV first attempts to factorize the matrix in single-precision and use this factorization within an iterative refinement
procedure to produce a solution with double-precision normwise backward error quality (see below). If the approach
fails the method switches to a double-precision factorization and solve.

The iterative refinement process is stopped if
ITER > ITERMAX
or for all the RHS we have:
RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
where
* ITER is the number of the current iteration in the iterative refinement process
¢ RNRM is the infinity-norm of the residual
e XNRM is the infinity-norm of the solution
* ANRM is the infinity-operator-norm of the matrix A
» EPS is the machine epsilon for double precision
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.
Parameters
en
— Type: int
— Direction: Input
The number of linear equations, i.e., the order of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

— Type: D/Z Pointer
— Direction: Input or Input/Output
— Dimension: (LDA, N)

On entry, the N-by-N coefficient matrix A.

On exit, if iterative refinement has been successfully used (culaNoError is returned and iter > 0, see
description below), then A is unchanged, if double precision factorization has been used (culaNoError
is returned and iter < O, see description below), then the array A contains the factors L and U from
the factorization A = P*L*U; the unit diagonal elements of L are not stored.

e lda

LA|tools N

— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
* ipiv
— Type: int Pointer
— Direction: Output
— Dimension: (N)

The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row
IPIV(i). Corresponds either to the single precision factorization (if culaNoError is returned and iter
> 0) or the double precision factorization (if culaNoError is returned and iter < 0).

— Type: D/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
The N-by-NRHS right hand side matrix B.
* 1db
— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,N).

— Type: D/Z Pointer
— Direction: Input/Output
— Dimension: (LDX, NRHS)
If culaNoError is returned, the N-by-NRHS solution matrix X.
e ldx
— Type: int
— Direction: Input
The leading dimension of the array X. LDX >= max(1,N).
* iter
— Type: int Pointer
— Direction: Output
— Dimension: (1)
> (: iterative refinement has been sucessfully used. Returns the number of iterations

< 0: iterative refinement has failed, double-precision factorization has been performed

LA |tools

Value | Operation
-1 the routine fell back to full precision for implementation- or machine-specific reasons
-2 narrowing the precision induced an overflow, the routine fell back to full precision
-3 failure of single precision GETRF
-31 stop the iterative refinement after the 30th iterations

Differences from LAPACK

See No Workspace Parameters section. See Pivot Arrays section.

3.16 GESVD

CULA Routines
The GESVD functionality is implemented by the following CULA routines:

* Host Memory

culaSgesvd

culaDgesvd

culaCgesvd

culaZgesvd

culaGesvd (C++ style, type overloaded)
* Device Memory
— culaDeviceSgesvd
— culaDeviceDgesvd
— culaDeviceCgesvd
— culaDeviceZgesvd
— culaDeviceGesvd (C++ style, type overloaded)
Description

GESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left
and/or right singular vectors. The SVD is written

A =U * SIGMA * transpose(V)

where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthog-
onal/unitary matrix, and V is an N-by-N orthogonal/unitary matrix. The diagonal elements of SIGMA are the singular
values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U
and V are the left and right singular vectors of A.

Note that the routine returns VT, not V. This Toutput of GESVD is notable because other implementations, such as
Matlab, return the non-transposed version via syntax like [U S V] = svd(A);. The V matrix then needs to be transposed
to reconstruct the original matrix, such as U*S*V’. LAPACK avoids this by pre-transposing this output, but for those
working with both LAPACK and Matlab code, this is a common pitfall.

Parameters
* jobu
— Type: char

LA|tools N

— Direction: Input
Specifies options for computing all or part of the matrix U:
= ‘A’: all M columns of U are returned in array U:
= ‘S’: the first min(m,n) columns of U (the left singular vectors) are returned in the array U;
= ‘O’: the first min(m,n) columns of U (the left singular vectors) are overwritten on the array A;
= ‘N’: no columns of U (no left singular vectors) are computed.
¢ jobvt
— Type: char
— Direction: Input
Specifies options for computing all or part of the matrix VT :
= ‘A’: all N rows of VT are returned in the array VT,
= ‘S’: the first min(m,n) rows of VT (the right singular vectors) are returned in the array VT;
= ‘O’: the first min(m,n) rows of VT (the right singular vectors) are overwritten on the array A;
= ‘N’: no rows of VT (no right singular vectors) are computed.

JOBVT and JOBU cannot both be ‘O’.

— Type: int
— Direction: Input

The number of rows of the input matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns of the input matrix A. N >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the M-by-N matrix A.
On exit,

if JOBU = ‘O’, A is overwritten with the first min(m,n) columns of U (the left singular vectors, stored
columnwise);

if JOBVT = ‘O’, A is overwritten with the first min(m,n) rows of VT (the right singular vectors,
stored rowwise);

if JOBU != ‘O’ and JOBVT != ‘O’, the contents of A are destroyed.
e lda
— Type: int

LA |tools

e ldu

o vt

e ldvt

— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

— Type: S/D Pointer
— Direction: Output
— Dimension: (min (M, N))

The singular values of A, sorted so that S(i) >= S(i+1).

- Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (LDU, UCOL)

(LDU,M) if JOBU = ‘A’ or (LDU,min(M,N)) if JOBU = ‘S’. If JOBU = ‘A’, U contains the M-by-M
orthogonal/unitary matrix U; if JOBU = ‘S’, U contains the first min(m,n) columns of U (the left
singular vectors, stored columnwise); if JOBU = ‘N’ or ‘O’, U is not referenced.

— Type: int
— Direction: Input

The leading dimension of the array U. LDU >= 1; if JOBU = ‘S’ or ‘A’, LDU >= M.

— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (LDVT, N)

IfJOBVT = ‘A’, VT contains the N-by-N orthogonal/unitary matrix VT . if JOBVT = S’, VT contains
the first min(m,n) rows of VT (the right singular vectors, stored rowwise); if JOBVT = ‘N’ or ‘O’,
VT is not referenced.

— Type: int
— Direction: Input

The leading dimension of the array VT. LDVT >= 1; if JOBVT = ‘A’, LDVT >=N; if JOBVT = ‘S,
LDVT >= min(M,N).

Differences from LAPACK

See No Workspace Parameters section.

3.17 GETRF

CULA Routines
The GETREF functionality is implemented by the following CULA routines:

* Host Memory

LA |tools

33

— culaSgetrf

— culaDgetrf

— culaCgetrf

— culaZgetrf

— culaGetrf (C++ style, type overloaded)

* Device Memory

— culaDeviceSgetrf

— culaDeviceDgetrf

— culaDeviceCgetrf

— culaDeviceZgetrf

— culaDeviceGetrf (C++ style, type overloaded)
Description
GETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
The factorization has the form

A=P*L*U

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U
is upper triangular (upper trapezoidal if m < n).

Parameters
*m
— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix A. N >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are
not stored.

* lda
— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

LA

tools “

* ipiv
— Type: int Pointer
— Direction: Output
— Dimension: (min (M, N))
The pivot indices; for 1 <=1 <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
Further Details

See Pivot Arrays section.

3.18 GETRI

CULA Routines
The GETRI functionality is implemented by the following CULA routines:
* Host Memory
- culaSgetri
— culaDgetri
- culaCgetri
— culaZgetri
— culaGetri (C++ style, type overloaded)
* Device Memory
— culaDeviceSgetri
— culaDeviceDgetri
— culaDeviceCgetri
— culaDeviceZgetri
— culaDeviceGetri (C++ style, type overloaded)
Description
GETRI computes the inverse of a matrix using the LU factorization computed by GETRF.
This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A).

If solution to a system of linear equations, please favor the routines GESV, GETRF/GETRS, or GELS instead as they
will provide more accurate answers in this case.

Parameters
°n
— Type: int
— Direction: Input

The order of the matrix A. N >=0.

— Type: S/D/C/Z Pointer

— Direction: Input/Output

LA|tools y

— Dimension: (LDA, N)
On entry, the factors L and U from the factorization A = P*L*U as computed by GETRF.
On exit, if culaNoError is returned, the inverse of the original matrix A.
* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
* ipiv
— Type: int Pointer
— Direction: Input

— Dimension: (N)

The pivot indices from GETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).

Further Details
See Pivot Arrays section.
Differences from LAPACK

See No Workspace Parameters section.

3.19 GETRS

CULA Routines
The GETRS functionality is implemented by the following CULA routines:

* Host Memory

culaSgetrs

— culaDgetrs

— culaCgetrs

— culaZgetrs

— culaGetrs (C++ style, type overloaded)

* Device Memory

— culaDeviceSgetrs

— culaDeviceDgetrs

— culaDeviceCgetrs

— culaDeviceZgetrs

— culaDeviceGetrs (C++ style, type overloaded)
Description
GETRS solves a system of linear equations

A*X=BorA’*X=B

LA |tools

36

with a general N-by-N matrix A using the LU factorization computed by GETRF.
Parameters
* trans
— Type: char
— Direction: Input
Specifies the form of the system of equations: = ‘N’: A * X = B (No transpose)
= ‘T’: A’* X = B (Transpose)

=‘C’: A* X = B (Conjugate transpose = Transpose)

— Type: int
— Direction: Input
The order of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (LDA, N)
The factors L and U from the factorization A = P*L*U as computed by GETRF.
* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
* ipiv
— Type: int Pointer
— Direction: Input
— Dimension: (N)

The pivot indices from GETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the right hand side matrix B.

On exit, the solution matrix X.

LA |tools

* ldb
— Type: int
— Direction: Input
The leading dimension of the array B. LDB >= max(1,N).
Further Details

See Pivot Arrays section.

3.20 GGLSE

CULA Routines
The GGLSE functionality is implemented by the following CULA routines:
* Host Memory

— culaSgglse

culaDgglse

culaCgglse

culaZgglse

culaGglse (C++ style, type overloaded)
* Device Memory
— culaDeviceSgglse
— culaDeviceDgglse
— culaDeviceCgglse
— culaDeviceZgglse
— culaDeviceGglse (C++ style, type overloaded)
Description
GGLSE solves the linear equality-constrained least squares (LSE) problem:
minimize Il ¢ - A*x |I_2 subject to B*x =d

where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed
that P <= N <= M+P, and

rank(B) =P and rank((A))=N. ((B))

These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ
factorization of the matrices (B, A) given by

B = (0 R)*Q, A =Z*T*Q.
Parameters
°m
— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

LA|tools .

e lda

* ldb

— Type: int
— Direction: Input

The number of columns of the matrices A and B. N >=0.

— Type: int
— Direction: Input

The number of rows of the matrix B. 0 <= P <= N <= M+P.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper
trapezoidal matrix T.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, N)

On entry, the P-by-N matrix B.

On exit, the upper triangle of the subarray B(1:P,N-P+1:N) contains the P-by-P upper triangular
matrix R.

— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,P).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (M)
On entry, C contains the right hand side vector for the least squares part of the LSE problem.

On exit, the residual sum of squares for the solution is given by the sum of squares of elements N-P+1
to M of vector C.

LA|tools N

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (P)
On entry, D contains the right hand side vector for the constrained equation.

On exit, D is destroyed.

X
— Type: S/D/C/Z Pointer
— Direction: Output
— Dimension: (N)
On exit, X is the solution of the LSE problem.
Differences from LAPACK

See No Workspace Parameters section.

3.21 GGRQF

CULA Routines
The GGRQF functionality is implemented by the following CULA routines:
* Host Memory

— culaSggrgf

culaDggrgf

culaCggrgf

culaZggrgf

culaGgrgf (C++ style, type overloaded)
* Device Memory

— culaDeviceSggrgf
— culaDeviceDggrgf
— culaDeviceCggrgf
— culaDeviceZggrqgf
— culaDeviceGgrgf (C++ style, type overloaded)

Description

GGRQF computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B:

A =R*Q, B =Z*T*Q,

where Q is an N-by-N orthogonal/unitary matrix, Z is a P-by-P orthogonal/unitary matrix, and R and T assume one of
the forms:

ifM<=N,R=(0RI2)M,orif M>N,R=(R11)M-N, NNMM (R21)N N

where R12 or R21 is upper triangular, and

LA |tools ©

ifP>=N,T=(T11)N,orif P<N,T=(T11T12)P, (0)P-NPN-P N
where T11 is upper triangular.

In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ factorization of
A*inv(B):

A*inv(B) = (R*inv(T))*Z’
where inv(B) denotes the inverse of the matrix B, and Z’ denotes the transpose of the matrix Z.
Parameters
°m
— Type: int
— Direction: Input

The number of rows of the matrix A. M >= 0.

— Type: int
— Direction: Input

The number of rows of the matrix B. P >=0.

— Type: int
— Direction: Input

The number of columns of the matrices A and B. N >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the M-by-N matrix A.

On exit, if M <= N, the upper triangle of the subarray A(1:M,N-M+1:N) contains the M-by-M upper
triangular matrix R; if M > N, the elements on and above the (M-N)-th subdiagonal contain the
M-by-N upper trapezoidal matrix R; the remaining elements, with the array TAUA, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors (see Further Details).

* lda

— Type: int

— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

* taua

— Type: S/D/C/Z Pointer

— Direction: Output

— Dimension: (min (M, N))

The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q (see

Further Details).
LA|tools .

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, N)

On entry, the P-by-N matrix B.

On exit, the elements on and above the diagonal of the array contain the min(P,N)-by-N upper trape-
zoidal matrix T (T is upper triangular if P >= N); the elements below the diagonal, with the array
TAUB, represent the orthogonal/unitary matrix Z as a product of elementary reflectors (see Further
Details).

e Idb

— Type: int

— Direction: Input

The leading dimension of the array B. LDB >= max(1,P).

* taub

— Type: S/D/C/Z Pointer

— Direction: Output

— Dimension: (min (P, N))

The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Z (see
Further Details).

Further Details

The matrix Q is represented as a product of elementary reflectors
Q=H(1) H?2) . .. H(k), where k = min(m,n).

Each H(i) has the form
H(Gi) =1-taua * v * v’

where taua is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
in A(m-k+i,1:n-k+i-1), and taua in TAUA(1). To form Q explicitly, use LAPACK subroutine ORGRQ. To use Q to
update another matrix, use LAPACK subroutine ORMRQ/UNMRQ.

The matrix Z is represented as a product of elementary reflectors
Z =H(1) HQ2) . . . H(k), where k = min(p,n).

Each H(i) has the form
H@G) =1-taub * v * v’

where taub is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine ORGQR/UNGQR. To use Z to update another
matrix, use LAPACK subroutine ORMQR/UNMQR.

Differences from LAPACK

See No Workspace Parameters section.

LA |tools Y

3.22 ORGBR/UNGBR

CULA Routines
The ORGBR/UNGBR functionality is implemented by the following CULA routines:
* Host Memory
— culaSorgbr
— culaDorgbr
— culaCungbr
— culaZungbr
— culaOrgbr (C++ style, type overloaded)
— culaUngbr (C++ style, type overloaded)
* Device Memory
— culaDeviceSorgbr
— culaDeviceDorgbr
— culaDeviceCungbr
— culaDeviceZungbr
— culaDeviceOrgbr (C++ style, type overloaded)
— culaDeviceUngbr (C++ style, type overloaded)
Description

ORGBR/UNGBR generates one of the real/complex orthogonal/unitary matrices Q or PT determined by GEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * PT. Q and PT are defined as products of elementary reflectors
H() or G(i) respectively.

If VECT = ‘Q’, A is assumed to have been an M-by-K matrix, and Q is of order M: if m >=k, Q =H(1) H(2) . . . H(k)
and ORGBR returns the first n columns of Q, where m >=n >=k; if m <k, Q = H(1) H(2) . . . H(m-1) and ORGBR
returns Q as an M-by-M matrix.

If VECT = ‘P, A is assumed to have been a K-by-N matrix, and PT is of order N: if k < n, PT = G(k) . . . G(2) G(1)
and ORGBR returns the first m rows of PT , where n >=m >=k; if k >=n, PT =G(n-1) . . . G(2) G(1) and ORGBR
returns PT as an N-by-N matrix.

Parameters
* vect
— Type: char
— Direction: Input

Specifies whether the matrix Q or the matrix PT is required, as defined in the transformation applied
by GEBRD:

= ‘Q’: generate Q;

= ‘P’: generate PT.

— Type: int

LA |tools B

e Ilda

e tau

— Direction: Input

The number of rows of the matrix Q or PT to be returned. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix Q or PT to be returned. N >= 0. If VECT = ‘Q’, M >= N >=
min(M,K); if VECT = ‘P’, N >= M >= min(N,K).

— Type: int
— Direction: Input

If VECT = ‘Q’, the number of columns in the original M-by-K matrix reduced by GEBRD. If VECT
= ‘P’, the number of rows in the original K-by-N matrix reduced by GEBRD. K >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the vectors which define the elementary reflectors, as returned by GEBRD.

On exit, the M-by-N matrix Q or PT.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,M).

— Type: S/D/C/Z Pointer, dimension
— Direction: Input
(min(M,K)) if VECT = ‘Q’ (min(N,K)) if VECT = ‘P’

TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or
PT, as returned by GEBRD in its array argument TAUQ or TAUP.

Differences from LAPACK

See No Workspace Parameters section.

3.23 ORGHR/UNGHR

CULA Routines
The ORGHR/UNGHR functionality is implemented by the following CULA routines:

* Host Memory

— culaSorghr

LA |tools u

— culaDorghr
— culaCunghr
— culaZunghr

— culaOrghr (C++ style, type overloaded)

culaUnghr (C++ style, type overloaded)
* Device Memory
— culaDeviceSorghr
— culaDeviceDorghr
— culaDeviceCunghr
— culaDeviceZunghr
— culaDeviceOrghr (C++ style, type overloaded)
— culaDeviceUnghr (C++ style, type overloaded)
Description

ORGHR/UNGHR generate a real/complex orthogonal/unitary matrix Q which is defined as the product of IHI-ILO
elementary reflectors of order N, as returned by GEHRD:

Q =H(lo) H(ilo+1) . . . H(ihi-1).
Parameters
°n
— Type: int
— Direction: Input
The order of the matrix Q. N >= 0.
« ilo
— Type: int
— Direction: Input
* ihi
— Type: int
— Direction: Input

ILO and IHI must have the same values as in the previous call of GEHRD. Q is equal to the unit
matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <=IHI <= N, if N > 0; ILO=1 and
THI=0, if N=0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the vectors which define the elementary reflectors, as returned by GEHRD.
On exit, the N-by-N unitary matrix Q.
* lda

LA |tools B

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

* tau

— Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (N-1)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GEHRD.

Differences from LAPACK

See No Workspace Parameters section.

3.24 ORGLQ/UNGLQ

CULA Routines
The ORGLQ/UNGLAQ functionality is implemented by the following CULA routines:
* Host Memory
— culaSorglg
— culaDorglg
- culaCunglg
— culaZunglg

— culaOrglg (C++ style, type overloaded)

culaUnglqg (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSorglqg
— culaDeviceDorglg
— culaDeviceCunglqg
— culaDeviceZunglqg
— culaDeviceOrglg (C++ style, type overloaded)
— culaDeviceUnglqg (C++ style, type overloaded)
Description

ORGLQ/UNGLQ generates an M-by-N real matrix Q with orthonormal rows, which is defined as the first M rows of
a product of K elementary reflectors of order N

Q=H(k)...H®2)H1)
as returned by GELQF..
Parameters

*m

— Type: int

- Lﬂ|tOOlS 46

e Ilda

* tau

— Direction: Input

The number of rows of the matrix Q. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix Q. N >= M.

— Type: int
— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. M >=K >=0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i =
1,2,...,k, as returned by GELQF in the first k rows of its array argument A.

On exit, the M-by-N matrix Q.

— Type: int
— Direction: Input

The first dimension of the array A. LDA >= max(1,M).

- Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GELQF-.

Differences from LAPACK

See No Workspace Parameters section.

3.25 ORGQL/UNGQL

CULA Routines
The ORGQL/UNGQL functionality is implemented by the following CULA routines:

* Host Memory

— culaSorggl

— culaDorgqgl

— culaCungqgl

ZULA |tools v

— culaZungqgl
— culaOrgqgl (C++ style, type overloaded)
— culaUngqgl (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSorggl
— culaDeviceDorggl
— culaDeviceCunggl
— culaDeviceZunggl
— culaDeviceOrggl (C++ style, type overloaded)
— culaDeviceUngqgl (C++ style, type overloaded)
Description

ORGQL/UNGQL generates an M-by-N real/complex matrix Q with orthonormal columns, which is defined as the last
N columns of a product of K elementary reflectors of order M

Q=H(k)...H2)H1)
as returned by GELQF.
Parameters
*m
— Type: int
— Direction: Input

The number of rows of the matrix Q. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix Q. M >= N >= (.

— Type: int
— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. N >= K >=0.

— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the (n-k+i)-th column must contain the vector which defines the elementary reflector H(i),
fori=1,2,....k, as returned by GELQF in the last k columns of its array argument A.

On exit, the M-by-N matrix Q.
e Ilda
— Type: int

LA |tools B

— Direction: Input

The first dimension of the array A. LDA >= max(1,M).

* tau

— Type: S/D/C/Z Pointer,
— Direction: Input
— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GELQF.

Differences from LAPACK

See No Workspace Parameters section.

3.26 ORGQR/UNGQR

CULA Routines
The ORGQR/UNGQR functionality is implemented by the following CULA routines:
* Host Memory
- culaSorgqgr
— culaDorgqgr
— culaCungqgr
— culaZunggr

— culaOrggr (C++ style, type overloaded)

culaUngqgr (C++ style, type overloaded)
* Device Memory
— culaDeviceSorgqgr
— culaDeviceDorgqgr
— culaDeviceCungqgr
— culaDeviceZunggr
— culaDeviceOrggr (C++ style, type overloaded)
— culaDeviceUnggr (C++ style, type overloaded)
Description

ORGQR/UNGQR generates an M-by-N real/complex matrix Q with orthonormal columns, which is defined as the
first N columns of a product of K elementary reflectors of order M

Q=H(1)H(®2)...Hk)
as returned by GEQRF.
Parameters

*m

— Type: int

- Lﬂ|tOOlS 49

— Direction: Input

The number of rows of the matrix Q. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix Q. M >= N >= (.

— Type: int
— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. N >= K >=0.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i =
1,2,....,k, as returned by GEQRF in the first k columns of its array argument A.

On exit, the M-by-N matrix Q.
* lda
— Type: int
— Direction: Input
The first dimension of the array A. LDA >= max(1,M).
* tau
- Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (K)
TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GEQRF..
Differences from LAPACK

See No Workspace Parameters section.

3.27 ORGRQ/UNGRQ

CULA Routines
The ORGRQ/UNGRQ functionality is implemented by the following CULA routines:
* Host Memory
— culaSorgrqg
— culaDorgrg

— culaCungrqg

- Lﬂ|tOOlS 50

— culaZungrqg
— culaOrgrqg (C++ style, type overloaded)
— culaUngrqg (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSorgrqg
— culaDeviceDorgrqg
— culaDeviceCungrq
— culaDeviceZungrqg
— culaDeviceOrgrqg (C++ style, type overloaded)
— culaDeviceUngrqg (C++ style, type overloaded)
Description

ORGRQ/UNGRQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the last M rows
of a product of K elementary reflectors of order N

Q=H(1) H®2) ... H(k)y
as returned by GERQF.
Parameters

M
— Direction: Input
— Type: int

The number of rows of the matrix Q. M >= 0.

— Direction: Input
— Type: int

The number of columns of the matrix Q. N >= M.

— Direction: Input
— Type: int

The number of elementary reflectors whose product defines the matrix Q. M >= K >=0.

— Direction: Input/Output
— Type: S/D/C/Z Pointer,
— Dimension: (LDA, N)

On entry, the (m-k+i)-th row must contain the vector which defines the elementary reflector H(i),
fori = 1,2,....k, as returned by GERQF in the last k rows of its array argument A. On exit, the
M-by-N matrix Q.

« LDA

— Direction: Input

LA|tools)

— Type: int
The first dimension of the array A. LDA >= max(1,M).
« TAU
— Direction: Input
— Type: S/D/C/Z Pointer,
— Dimension: (K)
TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GERQF'.
Differences from LAPACK

See No Workspace Parameters section.

3.28 ORMLQ/UNMLQ

CULA Routines
The ORMLQ/UNMLAQ functionality is implemented by the following CULA routines:
* Host Memory
— culaSormlg
— culaDormlg
— culaCunmlg
— culaZunmlg

— culaOrmlqg (C++ style, type overloaded)

culaUnmlqg (C++ style, type overloaded)
* Device Memory

— culaDeviceSormlqg
— culaDeviceDormlqg
— culaDeviceCunmlqg
— culaDeviceZunmlqg
— culaDeviceOrmlqg (C++ style, type overloaded)
— culaDeviceUnmlqg (C++ style, type overloaded)

Description

ORMLQ/UNMLAQ overwrite the general real/complex M-by-N matrix C with

SIDE = ‘L’ | SIDE = ‘R’
TRANS = ‘N’ Q*C C*Q
TRANS = ‘T’ QT*C c*Qrf

where Q is a real/complex orthogonal/unitary matrix defined as the product of k elementary reflectors
Q=Hk)...H®2) H®)
as returned by GELQF. Q is of order M if SIDE = ‘L.’ and of order N if SIDE = ‘R’.

Parameters

LA|tools .

e side

e trans

e lda

* tau

— Type: char

— Direction: Input
= ‘L’: apply Q or QT from the Left;
= ‘R’: apply Q or QT from the Right.

— Type: char

— Direction: Input
= ‘N’: No transpose, apply Q;
= “T’: Transpose, apply Q.

— Type: int
— Direction: Input

The number of rows of the matrix C. M >= 0.

— Type: int
— Direction: Input

The number of columns of the matrix C. N >= 0.

— Type: int
— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L', M >= K >=
0; if SIDE = ‘R’, N>= K >=0.

— Type: S/D/C/Z Pointer, dimension
— Direction: Input
(LDA,M) if SIDE = ‘L’, (LDA,N) if SIDE = ‘R’

The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,....)k,
as returned by GELQF in the first k rows of its array argument A. A is modified by the routine but
restored on exit.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,K).

— Type: S/D/C/Z Pointer

— Direction: Input

LA |tools

53

e ldc

— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GELQF.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDC, N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q * C or QT * Cor C * QT or C * Q.

— Type: int
— Direction: Input

The leading dimension of the array C. LDC >= max(1,M).

Differences from LAPACK

See No Workspace Parameters section.

3.29 ORMQL/UNMQL

CULA Routines
The ORMQL/UNMAQL functionality is implemented by the following CULA routines:

* Host Memory

culaSormgl
culaDormgl
culaCunmgl
culazunmgl
culaOrmgl (C++ style, type overloaded)

culaUnmgl (C++ style, type overloaded)

* Device Memory

culaDeviceSormgl
culaDeviceDormgl
culaDeviceCunmgl
culaDeviceZunmqgl
culaDeviceOrmgl (C++ style, type overloaded)

culaDeviceUnmgl (C++ style, type overloaded)

Description

ORMOQL/UNMQL overwrites the general real/complex M-by-N matrix C with

zULd|tools

54

SIDE =“L’ | SIDE = ‘R’
TRANS = ‘N’: Q*C C*Q
TRANS = “C’: Q**H * C C* Q**H

where Q is a real/complex orthogonal/unitary matrix defined as the product of k elementary reflectors
Q=H(k)...H®2)H1)
as returned by GELQF. Q is of order M if SIDE = ‘L.’ and of order N if SIDE = ‘R’.

Parameters
* side
— Type: char
— Direction: Input
= ‘L’: apply Q or Q**H from the Left;
= ‘R’: apply Q or Q**H from the Right.
* trans
— Type: char
— Direction: Input
= ‘N’: No transpose, apply Q;
= ‘C’: Transpose, apply Q**H.
*m

— Type: int
— Direction: Input

The number of rows of the matrix C. M >= 0.

°n
— Type: int
— Direction: Input
The number of columns of the matrix C. N >=0.
* k
— Type: int
— Direction: Input
The number of elementary reflectors whose product defines the matrix Q.
If SIDE=‘L’, M >=K>=0;
if SIDE = ‘R’, N>=K >=0.
°a

— Type: S/D/C/Z Pointer,
— Direction: Input

— Dimension: (LDA, K)

LA |tools

55

e Ilda

* tau

e Idc

The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,....k,
as returned by GELQF in the last k columns of its array argument A. A is modified by the routine but
restored on exit.

— Type: int

— Direction: Input
The leading dimension of the array A.
If SIDE = ‘L, LDA >= max(1,M);
if SIDE = ‘R’, LDA >= max(1,N).

— Type: S/D/C/Z Pointer,
— Direction: Input
— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GELQF.

— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDC, N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

— Type: int
— Direction: Input

The leading dimension of the array C. LDC >= max(1,M).

Differences from LAPACK

See No Workspace Parameters section.

3.30 ORMQR/UNMQR

CULA Routines
The ORMQR/UNMQR functionality is implemented by the following CULA routines:

* Host Memory

culaSormgr
culaDormgr
culaCormgr
culaZormgr

culaOrmgr (C++ style, type overloaded)

- Lﬂ|tOOlS 56

culaUnmgr (C++ style, type overloaded)

* Device Memory

culaDeviceSormgr
culaDeviceDormgr
culaDeviceCormgr
culaDeviceZormgr
culaDeviceOrmgr (C++ style, type overloaded)

culaDeviceUnmgr (C++ style, type overloaded)

Description

ORMOQR/UNMQR overwrites the general real M-by-N matrix C with

SIDE = ‘I

SIDE = ‘R’

TRANS = ‘N’ Q*C
TRANS=‘T’ | QT*C

C*Q
c*QT

where Q is a real/complex orthogonal/unitary matrix defined as the product of k elementary reflectors
Q=H(1)H®2)...Hk)
as returned by GEQRF. Q is of order M if SIDE = ‘L’ and of order N if SIDE = ‘R’.

Parameters
* side
— Type: char
— Direction: Input
= ‘L’: apply Q or QT from the Left;
= ‘R’: apply Q or Q" from the Right.
* trans
— Type: char
— Direction: Input
= ‘N’: No transpose, apply Q;
= “T’: Transpose, apply QT.
*m

— Type: int
— Direction: Input

The number of rows of the matrix C. M >= 0.
— Type: int
— Direction: Input

The number of columns of the matrix C. N >= 0.

— Type: int

LA |tools

57

e lda

* tau

e Idc

— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L', M >=K >=
0; if SIDE = ‘R’, N>=K >=0.

- Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (LDA, K)

The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,....k,
as returned by GEQRF in the first k columns of its array argument A. A is modified by the routine
but restored on exit.

— Type: int
— Direction: Input

The leading dimension of the array A. If SIDE = ‘L’, LDA >= max(1,M); if SIDE = ‘R’, LDA >=
max(1,N).

— Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GEQRF..

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDC, N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q * C or QT * C or C * QT or C * Q.

— Type: int
— Direction: Input

The leading dimension of the array C. LDC >= max(1,M).

Differences from LAPACK

See No Workspace Parameters section.

3.31 ORMRQ/UNMRQ

CULA Routines
The ORMRQ/UNMRAQ functionality is implemented by the following CULA routines:

* Host Memory

LA|tools B

— culaSormrqg
— culaDormrg
— culaCormrg
— culaZormrqg

— culaOrmrqg (C++ style, type overloaded)

culaUnmrqg (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSormrqg
— culaDeviceDormrqg
— culaDeviceCormrqg
— culaDeviceZormrqg
— culaDeviceOrmrqg (C++ style, type overloaded)
— culaDeviceUnmrqg (C++ style, type overloaded)
Description
ORMRQ/UNMRQ overwrites the general real M-by-N matrix C with
SIDE = ‘I

SIDE = ‘R’

TRANS = ‘N’ Q*C
TRANS = ‘T’ QT *C

C*Q
c*qQT

where Q is a real/complex orthogonal/unitary matrix defined as the product of k elementary reflectors

Q=H(1)H(2)...Hk)

as returned by GERQF. Q is of order M if SIDE = ‘L’ and of order N if SIDE = ‘R’.

Parameters
* side
— Type: char
— Direction: Input
= ‘L’: apply Q or QT from the Left;
= ‘R’: apply Q or QT from the Right.
* trans
— Type: char
— Direction: Input
= ‘N’: No transpose, apply Q;
= “T’: Transpose, apply Q.
*m

— Type: int
— Direction: Input

The number of rows of the matrix C. M >= 0.

LA |tools

59

e lda

* tau

e ldc

— Type: int
— Direction: Input

The number of columns of the matrix C. N >= 0.

— Type: int
— Direction: Input

The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L', M >= K >=
0; if SIDE = ‘R’, N>= K >=0.

— Type: S/D/C/Z Pointer, dimension
— Direction: Input
(LDA.,M) if SIDE = ‘L”, (LDA,N) if SIDE = ‘R’

The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,....)k,
as returned by GERQF in the last k rows of its array argument A. A is modified by the routine but
restored on exit.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,K).

— Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (K)

TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by GERQF.

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDC, N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q * C or QT * Cor C * QT or C * Q.

— Type: int
— Direction: Input

The leading dimension of the array C. LDC >= max(1,M).

Differences from LAPACK

See No Workspace Parameters section.

LA |tools

60

3.32 POSV

CULA Routines
The POSYV functionality is implemented by the following CULA routines:
* Host Memory

— culaSposv

— culaDposv

— culaCposv

— culaZposv

— culaPosv (C++ style, type overloaded)

* Device Memory

— culaDeviceSposv

— culaDeviceDposv

— culaDeviceCposv

— culaDeviceZposv

— culaDevicePosv (C++ style, type overloaded)
Description
POSV computes the solution to a real system of linear equations

A*X =B,
where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A=UT*U,if UPLO= ‘U, orA=L *L", if UPLO = ‘L’,

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve
the system of equations A * X = B.

Parameters
* uplo
— Type: char
— Direction: Input
= ‘U’: Upper triangle of A is stored;
= ‘L’: Lower triangle of A is stored.
°n

— Type: int
— Direction: Input
The number of linear equations, i.e., the order of the matrix A. N >= 0.
* nrhs

— Type: int

LA|tools)

— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*a
— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the symmetric matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular part of
A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is
not referenced. If UPLO = ‘L, the leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
On exit, if culaNoError is returned, the factor U or L from the Cholesky factorization A = UT * U or
A=L*LT.
* lda
— Type: int
— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
*b
— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if culaNoError is returned, the N-by-NRHS solution matrix X.
 1db

— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,N).

3.33 POTRF

CULA Routines
The POTREF functionality is implemented by the following CULA routines:

* Host Memory

culaSpotrf

culaDpotrf

culaCpotrf

culaZpotrf

culaPotrf (C++ style, type overloaded)

* Device Memory

LA |tools

62

— culaDeviceSpotrf

— culaDeviceDpotrf

— culaDeviceCpotrf

— culaDeviceZpotrf

— culaDevicePotrf (C++ style, type overloaded)
Description
POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
The factorization has the form

A=UT*U,if UPLO= ‘U, orA=L * LT, if UPLO = ‘L’,

where U is an upper triangular matrix and L is lower triangular.

Parameters
* uplo
— Type: char
— Direction: Input
= ‘U’: Upper triangle of A is stored;
= ‘L’: Lower triangle of A is stored.
*n

— Type: int
— Direction: Input

The order of the matrix A. N >= 0.

°a
— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the symmetric matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular part of
A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is
not referenced. If UPLO = ‘L, the leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
On exit, if culaNoError is returned, the factor U or L from the Cholesky factorization A = UT * U or
A=L*LT
* lda
— Type: int

— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

LA |tools

63

3.34 POTRS

CULA Routines
The POTRS functionality is implemented by the following CULA routines:
* Host Memory
— culaSpotrs
— culaDpotrs
— culaCpotrs
— culaZpotrs
— culaPotrs (C++ style, type overloaded)
* Device Memory
— culaDeviceSpotrs
— culaDeviceDpotrs
— culaDeviceCpotrs
— culaDeviceZpotrs
— culaDevicePotrs (C++ style, type overloaded)
Description

POTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky
factorization A = UT * U or A =L * LT computed by POTRF.

Parameters
* uplo
— Type: char
— Direction: Input
= ‘U’: Upper triangle of A is stored;
= ‘L’: Lower triangle of A is stored.
°n

— Type: int
— Direction: Input
The order of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

— Type: S/D/C/Z Pointer

— Direction: Input

- Lﬂ|tOOlS 64

— Dimension: (LDA, N)

The triangular factor U or L from the Cholesky factorization A = UT * U or A =L * LT, as computed
by POTRF.

* lda
— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
* ldb
— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,N).

3.35 STEBZ

CULA Routines
The STEBZ functionality is implemented by the following CULA routines:
* Host Memory
— culaSstebz
— culaDstebz
— culaStebz (C++ style, type overloaded)
¢ Device Memory
— culaDeviceSstebz
— culaDeviceDstebz
— culaDeviceStebz (C++ style, type overloaded)
Description

STEBZ computes the eigenvalues of a symmetric tridiagonal matrix T. The user may ask for all eigenvalues, all
eigenvalues in the half-open interval (VL, VU], or the IL-th through IU-th eigenvalues.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than overflow**(1/2) * under-
flow**(1/4) in absolute value, and for greatest accuracy, it should not be much smaller than that.

See W. Kahan “Accurate Eigenvalues of a Symmetric Tridiagonal Matrix”, Report CS41, Computer Science Dept.,
Stanford University, July 21, 1966.

Please note that complex versions of this function do not exist.

LA|tools .

Parameters

* range

— Type: char
— Direction: Input
= ‘A’: (“All”) all eigenvalues will be found.
= ‘V’: (“Value”) all eigenvalues in the half-open interval (VL, VU] will be found.

= ‘I": (“Index”) the IL-th through IU-th eigenvalues (of the entire matrix) will be found.

e order

- Type: char
— Direction: Input

= ‘B’: (“By Block”) the eigenvalues will be grouped by split-off block (see IBLOCK, ISPLIT) and
ordered from smallest to largest within the block. This code behaves similarly to “E” and will report
only one block.

= ‘E’: (“Entire matrix”) the eigenvalues for the entire matrix will be ordered from smallest to largest.

— Type: int
— Direction: Input

The order of the tridiagonal matrix T. N >= 0.

Type: S/D Value

Direction: Input

- Type: S/D Value
— Direction: Input

If RANGE="V’, the lower and upper bounds of the interval to be searched for eigenvalues. Eigen-
values less than or equal to VL, or greater than VU, will not be returned. VL < VU. Not referenced
if RANGE = ‘A’ or ‘T".

— Type: int

— Direction: Input

— Type: int
— Direction: Input

If RANGE="T’, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
1<=IL<=IU<=N,if N>0;IL=1and IU =0 if N = 0. Not referenced if RANGE = ‘A’ or ‘V’.

¢ abstol

— Type: S/D

LA|tools 3

— Direction: Input

The absolute tolerance for the eigenvalues. An eigenvalue (or cluster) is considered to be located if
it has been determined to lie in an interval whose width is ABSTOL or less. If ABSTOL is less than
or equal to zero, then ULP*| T | will be used, where | T | means the 1-norm of T.

Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold,

not zero.
d
— Type: S/D Pointer
— Direction: Input
— Dimension: (N)
The N diagonal elements of the tridiagonal matrix T.
e
— Type: S/D Pointer
— Direction: Input
— Dimension: (N-1)
The (N-1) off-diagonal elements of the tridiagonal matrix T. Not referenced if N <= 1.
m
— Type: int Pointer, always host
— Direction: Output
The actual number of eigenvalues found. 0 <= M <= N.
nsplit
— Type: int Pointer, always host
— Direction: Output
The number of diagonal blocks in the matrix T. 1 <= NSPLIT <= N.
w
— Type: S/D Pointer
— Direction: Output
— Dimension: (N)
On exit, the first M elements of W will contain the eigenvalues. (STEBZ may use the remaining N-M
elements as workspace.)
iblock

— Type: int Pointer
— Direction: Output
— Dimension: (N)

At each row/column j where E(j) is zero or small, the matrix T is considered to split into a block
diagonal matrix. On exit, if culaNoError is returned, IBLOCK(i) specifies to which block (from 1 to
the number of blocks) the eigenvalue W(i) belongs. (STEBZ may use the remaining N-M elements
as workspace.)

LA |tools

67

* isplit
— Type: int Pointer
— Direction: Output
— Dimension: (N)

The splitting points, at which T breaks up into submatrices. The first submatrix consists of
rows/columns 1 to ISPLIT(1), the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), etc.,
and the NSPLIT-th consists of rows/columns ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

(Only the first NSPLIT elements will actually be used, but since the user cannot know a priori what
value NSPLIT will have, N words must be reserved for ISPLIT.)

Differences from LAPACK

See No Workspace Parameters section.

3.36 STEQR

CULA Routines
The STEQR functionality is implemented by the following CULA routines:
* Host Memory
— culaSsteqr
— culaDsteqgr
— culaCsteqr
— culaZsteqgr
— culaSteqr (C++ style, type overloaded)
* Device Memory
— culaDeviceSsteqgr
— culaDeviceDsteqr
— culaDeviceCsteqr
— culaDeviceZsteqr
— culaDeviceSteqgr (C++ style, type overloaded)
Description

STEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method. The eigenvectors of a full or band real/complex symmetric/Hermitian matrix can also be found if
HETRD or HPTRD or HBTRD has been used to reduce this matrix to tridiagonal form.

Parameters
* compz
— Type: char
— Direction: Input

= ‘N’: Compute eigenvalues only.

LA|tools 3

e ldz

= ‘V’: Compute eigenvalues and eigenvectors of the original symmetric/Hermitian matrix. On entry,
Z must contain the unitary matrix used to reduce the original matrix to tridiagonal form.

= ‘I": Compute eigenvalues and eigenvectors of the tridiagonal matrix. Z is initialized to the identity
matrix.

— Type: int
— Direction: Input

The order of the matrix. N >= 0.

— Type: S/D Pointer,
— Direction: Input/Output
— Dimension: (N)
On entry, the diagonal elements of the tridiagonal matrix.

On exit, if culaNoError is returned, the eigenvalues in ascending order.

— Type: S/D Pointer,
— Direction: Input/Output
— Dimension: (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal matrix.

On exit, E has been destroyed.

— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDZ, N)

On entry, if COMPZ = ‘V’, then Z contains the unitary matrix used in the reduction to tridiagonal
form.

On exit, if culaNoError is returned, then if COMPZ = “V’, Z contains the orthonormal eigenvec-
tors of the original symmetric/Hermitian matrix, and if COMPZ = ‘I’, Z contains the orthonormal
eigenvectors of the symmetric tridiagonal matrix. If COMPZ = ‘N’, then Z is not referenced.

— Type: int
— Direction: Input

The leading dimension of the array Z. LDZ >= 1, and if eigenvectors are desired, then LDZ >=
max(1,N).

Differences from LAPACK

See No Workspace Parameters section.

LA|tools .

3.37 SYEV/HEEV

CULA Routines

The SYEV/HEEV functionality is implemented by the following CULA routines:

* Host Memory

culaSsyev
culaDsyev
culaCheev
culaZheev
culaSyev (C++ style, type overloaded)

culaHeev (C++ style, type overloaded)

* Device Memory

culaDeviceSsyev
culaDeviceDsyev
culaDeviceCheev
culaDeviceZheev
culaDeviceSyev (C++ style, type overloaded)

culaDeviceHeev (C++ style, type overloaded)

Description
SYEV/HEEV computes all eigenvalues and, optionally, eigenvectors of a real/complex symmetric/Hermitian matrix
A.
Parameters
* jobz
— Type: char
— Direction: Input
= ‘N’: Compute eigenvalues only;
= ‘V’: Compute eigenvalues and eigenvectors.
* uplo
— Type: char
— Direction: Input
= ‘U’: Upper triangle of A is stored;
= ‘L’: Lower triangle of A is stored.
°n

— Type: int
— Direction: Input

The order of the matrix A. N >=0.

zULd|tools

70

e lda

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the symmetric/Hermitian matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular
part of A contains the upper triangular part of the matrix A. If UPLO = ‘L, the leading N-by-N lower
triangular part of A contains the lower triangular part of the matrix A.

On exit, if JOBZ = “V’, then if culaNoError is returned, A contains the orthonormal eigenvectors of
the matrix A. If JOBZ = ‘N’, then on exit the lower triangle (if UPLO="L") or the upper triangle (if
UPLO="U") of A, including the diagonal, is destroyed.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: S/D Pointer
— Direction: Qutput
— Dimension: (N)

If culaNoError is returned, the eigenvalues in ascending order.

Differences from LAPACK

See No Workspace Parameters section.

3.38 SYEVX/HEEVX

CULA Routines
The SYEVX/HEEVX functionality is implemented by the following CULA routines:

* Host Memory

culaSsyevx
culaDsyevx
culaCheevx
culaZheevx
culaSyevx (C++ style, type overloaded)

culaHeevx (C++ style, type overloaded)

* Device Memory

culaDeviceSsyevx
culaDeviceDsyevx
culaDeviceCheevx
culaDeviceZheevx

culaDeviceSyevx (C++ style, type overloaded)

zULd|tools

71

— culaDeviceHeevx (C++ style, type overloaded)
Description

SYEVX/HEEVX computes selected eigenvalues and, optionally, eigenvectors of a real/complex symmetric/Hermitian
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for
the desired eigenvalues.

Parameters
* jobz
— Type: char
— Direction: Input
= ‘N’: Compute eigenvalues only;
= ‘V’: Compute eigenvalues and eigenvectors.
* range
— Type: char
— Direction: Input
= ‘A’: all eigenvalues will be found.
= ‘V’: all eigenvalues in the half-open interval (VL,VU] will be found.
= ‘I’: the IL-th through IU-th eigenvalues will be found.
* uplo
— Type: char
— Direction: Input
= ‘U’: Upper triangle of A is stored;

= ‘L’: Lower triangle of A is stored.

— Type: int
— Direction: Input

The order of the matrix A. N >=0.

°a
— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, the symmetric/Hermitian matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular
part of A contains the upper triangular part of the matrix A. If UPLO = ‘L, the leading N-by-N lower
triangular part of A contains the lower triangular part of the matrix A.
On exit, the lower triangle (if UPLO="L") or the upper triangle (if UPLO="U") of A, including the
diagonal, is destroyed.
* lda

— Type: int

LA|tools .

— Direction: Input
The leading dimension of the array A. LDA >= max(1,N).
vl
— Type: s/D/C/Z
— Direction: Input
vu
— Type: S/D/C/Z
— Direction: Input

If RANGE="V’, the lower and upper bounds of the interval to be searched for eigenvalues. VL <
VU. Not referenced if RANGE = ‘A’ or ‘I’.

il
— Type: int
— Direction: Input
iu
— Type: int
— Direction: Input

If RANGE="T, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
1<=IL<=1U<=N,if N>0; IL =1 and IU = 0 if N = 0. Not referenced if RANGE = ‘A’ or ‘V’.

abstol
— Type: S/D/C/Z
— Direction: Input

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b] of width less than or equal to

ABSTOL + EPS *max(lal,Ibl),

where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*| T | will
be used in its place, where | T | is the 1-norm of the tridiagonal matrix obtained by reducing A to
tridiagonal form.

Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow thresh-
old, not zero. If this routine returns with culaDataError, indicating that some eigenvectors did not
converge, try setting ABSTOL to the recommended value.

See “Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Ac-
curacy,” by Demmel and Kahan, LAPACK Working Note #3.

m
— Type: int Pointer, always host
— Direction: Output
The total number of eigenvalues found. 0 <= M <= N. If RANGE = ‘A", M =N, and if RANGE = ‘",
M = TU-IL+1.
w

— Type: S/D Pointer,

LA |tools

73

e ldz

* ifail

— Direction: Output
— Dimension: (N)

On normal exit, the first M elements contain the selected eigenvalues in ascending order.

— Type: S/D/C/Z Pointer,
— Direction: Output
— Dimension: (LDZ, max (1,M))

If JOBZ = ‘V’, then if culaNoError is returned, the first M columns of Z contain the orthonormal
eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z
holding the eigenvector associated with W(i).

If an eigenvector fails to converge, then that column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned in IFAIL.

If JOBZ = ‘N’, then Z is not referenced.

Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE =
‘V’, the exact value of M is not known in advance and an upper bound must be used.

— Type: int
— Direction: Input

The leading dimension of the array Z. LDZ >= 1, and if JOBZ = *V’, LDZ >= max(1,N).

— Type: int Pointer
— Direction: Output
— Dimension: (N)

If JOBZ = *V’, then if culaNoError is returned, the first M elements of IFAIL are zero. If culaDataEr-
ror is returned, then IFAIL contains the indices of the eigenvectors that failed to converge.

If JOBZ = ‘N’, then IFAIL is not referenced.

Differences from LAPACK

See No Workspace Parameters section.

3.39 SYRDB/HERDB

CULA Routines
The SYRDB/HERDB functionality is implemented by the following CULA routines:

* Host Memory

culaSsyrdb
culaDsyrdb
culaCherdb

culazherdb

LA |tools 3

culaSyrdb (C++ style, type overloaded)

culaHerdb (C++ style, type overloaded)

* Device Memory

culaDeviceSsyrdb
culaDeviceDsyrdb
culaDeviceCherdb
culaDeviceZherdb
culaDeviceSyrdb (C++ style, type overloaded)

culaDeviceHerdb (C++ style, type overloaded)

Description

Given a symmetric/Hermitian N-by-N matrix A, SYRDB/HERDB reduces A to a symmetric tridiagonal form (T)
using a series of orthogonal transformations (Q), such that

A=Q*T*QT.

Note: This function should be used in place of SSYTRD, DSYTRD, CHETRD, and ZHETRD when an orthogonal Q
is not needed as the performance of these functions does not scale to large matrix sizes.

See “A framework for symmetric band reduction,” by Bischof, Lang, and Sun, ACM Transactions on Mathematical
Software (TOMS) archive Volume 26, Issue 4.

Parameters

e jobz

* uplo

* kd

— Type: char
— Direction: Input
Specifies which matrices outputs are contained within the outputs A and Z.

= ‘N’ : Forms the symmetric tridiagonal matrix T. Overwrites A with the banded matrix, B, and the
information needed to construct Qg.

= ‘V’ : Forms the symmetric tridiagonal matrix T. Overwrites A with Q.

= ‘U’ : Forms the symmetric tridiagonal matrix T. Overwrites A with the banded matrix, B, and the
information needed to construct Qg. Also, overwrites Z with Z*Q.

— Type: char

— Direction: Input
Specifies the triangular region where the symmetric input matrix is defined.
= ‘U’ : defined within the upper triangular part of A

= ‘L’ : defined within the lower triangular part of A

— Type: int
— Direction: Input

The order of the matrix A. N >= 0.

LA|tools)

Ida

tau

— Type: int
— Direction: Input

The bandwidth of the banded output matrix, B. KD >= 1.

— Type: S/D/C/Z Pointer,
— Direction: Input/Output
— Dimension: (LDA, N)
On entry, A is a real/complex symmetric/Hermitian matrix described by UPLO.

On exit, given the job code of ‘V’, A is overwritten by Q. Given a job code of ‘N’ or ‘U’, A is
overwritten by B and Qg as defined by UPLO and KD.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: S/D/C/Z Pointer,
— Direction: Output
— Dimension: max (1, N)

Holds the diagonal elements of the symmetric tridiagonal matrix T.

— Type: S/D/C/Z Pointer,
— Direction: Output
— Dimension: max (N-1)

Holds the off-diagonal elements of the symmetric tridiagonal matrix T.

— Type: S/D/C/Z Pointer,
— Direction: Output
— Dimension: max (1, N-KD-1)

The scalar factors of the elementary reflectors that form Qg.

— Type: S/D Pointer,

— Direction: Input/Output

— Dimension: (N-1)
An optional matrix that can be multiplied by Q given a ‘U’ job code.
= ‘U’ : contains the product of itself and Q (Z*Q).

= ‘N’, ‘V’ : not referenced

LA |tools

76

e ldz
— Type: int
— Direction: Input
The leading dimension of the array Z. LDZ >= max(1,N).
Differences from LAPACK

See No Workspace Parameters section.

3.40 SYTRD/HETRD

This function is not implemented in CULA. If a tridiagonal reduction is required, please see SYRDB/HERDB

3.41 TRTRI

CULA Routines
The TRTRI functionality is implemented by the following CULA routines:
* Host Memory
- culaStrtri
— culaDtrtri
- culaCtrtri
- culaZtrtri
— culaTrtri (C++ style, type overloaded)
* Device Memory
— culaDeviceStrtri
— culaDeviceDtrtri
— culaDeviceCtrtri
— culaDeviceZtrtri
— culaDeviceTrtri (C++ style, type overloaded)
Description

TRTRI computes the inverse of a real upper or lower triangular matrix A.

Parameters
* uplo
- Type: char
— Direction: Input
= ‘U’: A is upper triangular;
= ‘L’: A is lower triangular.
* diag

— Type: char

zULA|tools

e lda

— Direction: Input
= ‘N’: A is non-unit triangular;

= ‘U’: A is unit triangular.

— Type: int
— Direction: Input

The order of the matrix A. N >=0.

- Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDA, N)

On entry, the triangular matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular part of the
array A contains the upper triangular matrix, and the strictly lower triangular part of A is not refer-
enced. If UPLO = ‘L, the leading N-by-N lower triangular part of the array A contains the lower
triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = ‘U’, the
diagonal elements of A are also not referenced and are assumed to be 1.

On exit, the (triangular) inverse of the original matrix, in the same storage format.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

3.42 TRTRS

CULA Routines

The TRTRS functionality is implemented by the following CULA routines:

* Host Memory

culaStrtrs
culaDtrtrs
culaCtrtrs
culaZtrtrs

culaTrtrs (C++ style, type overloaded)

* Device Memory

culaDeviceStrtrs
culaDeviceDtrtrs
culaDeviceCtrtrs
culaDeviceZtrtrs

culaDeviceTrtrs (C++ style, type overloaded)

LA |tools

78

Description
TRTRS solves a triangular system of the form
A*X=BorAT*X =B,

where A is a triangular matrix of order N, and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.

Parameters
* uplo
— Type: char
— Direction: Input
= ‘U’: A is upper triangular;
= ‘L’: A is lower triangular.
* trans

— Type: char

— Direction: Input
Specifies the form of the system of equations: = ‘N’: A * X = B (No transpose)
= ‘T’: AT * X = B (Transpose)

=‘C’: AP * X = B (Conjugate transpose = Transpose)

e diag
— Type: char
— Direction: Input
= ‘N’: A is non-unit triangular;
= ‘U’: A is unit triangular.
°n

— Type: int
— Direction: Input
The order of the matrix A. N >=0.
* nrhs
— Type: int
— Direction: Input

The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

— Type: S/D/C/Z Pointer
— Direction: Input
— Dimension: (LDA, N)

The triangular matrix A. If UPLO = ‘U’, the leading N-by-N upper triangular part of the array A
contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If
UPLO = ‘L, the leading N-by-N lower triangular part of the array A contains the lower triangular

LA|tools .

e lda

* 1db

matrix, and the strictly upper triangular part of A is not referenced. If DIAG = ‘U’, the diagonal

elements of A are also not referenced and are assumed to be 1.

— Type: int
— Direction: Input

The leading dimension of the array A. LDA >= max(1,N).

— Type: S/D/C/Z Pointer
— Direction: Input/Output
— Dimension: (LDB, NRHS)
On entry, the right hand side matrix B.

On exit, if culaNoError is returned, the solution matrix X.

— Type: int
— Direction: Input

The leading dimension of the array B. LDB >= max(1,N).

zULd|tools

80

CHAPTER
FOUR

DIFFERENCES BETWEEN CULA AND
LAPACK

The usage of some CULA functions differ slightly from their LAPACK equivalents, though they perform the same
operations. This section details some of the API-wide ways that CULA and LAPACK differ.

4.1 No Workspace Parameters

Many LAPACK functions require a workspace for internal operation. For those LAPACK functions that utilize a
workspace, workspace sizes are queried by providing a -1 argument to what is typically an LWORK parameter. Upon
inspecting this parameter, the LAPACK function will determine the workspace required for this particular problem size
and will return the value in the WORK parameter. LAPACK (and other similar packages) then require the programmer
to provide a pointer to memory of sufficient size, which often requires that the programmer allocate new memory.

CULA uses both main and GPU workspace memories, and as such, LAPACK’s workspace query is not appropriate,
as the LAPACK interface allows for the specification of only one workspace. Instead of providing a more complicated
interface that adds parameters for both main and GPU workspace memories, CULA requires neither. Instead, any
workspaces that are required are allocated and tracked internally. This organization yields no significant performance
loss, and furthermore reduces the number of function calls by removing the need for a workspace query.

Note: Any workspaces that have been allocated internally may be cleared by calling culaFreeBuffers ().

LA|tools y

CHAPTER
FIVE

COMMON ERRORS

This section lists some of the common errors users make when using CULA and similar LAPACK packages.

5.1 Pivot Arrays

This section applies to functions in the LU Family (getrf, gesv, getrs, etc.).

CULA pivot arrays follow LAPACK conventions. These arrays are created for serial evaluation and describe a series
of row interchanges. The array [2 3 3] states “‘swap the first row with the second, then the second row with the third,
then the third row is unchanged.” For those working with Matlab, note that Matlab follows a different convention, in
which the pivot array describes a set of parallel row interchanges. The Matlab array [2 3 1] is equivalent to the first
example, and states “for the first row, obtain the second row; for the second row obtain the third; and for the third row
obtain the first.”

5.2 Padding With Zeros

A common GPU usage pattern is to pad matrices to multiples of 8/16/32 elements in order to achieve performance.
Routines such as GEMM (matrix-matrix multiply, as found in CUBLAS) are data-insensitive to these extra elements
if they are zero. CULA routines function differently and in many cases will react poorly if the zeros are included in
the computation space; for instance, solving a system in which the coefficient matrix has a full row or column of zeros
will result in a culaDataError as the matrix is indeed singular. To avoid this problem, please be sure to set the
LDx parameters to the padded size, but to set the remainder of the inputs that describe sizes (M, N, etc) to match the
size of the valid data for the computation (that is: the size before padding.) This will avoid many data errors.

LA|tools .

	Introduction
	Attributions

	Framework Functions
	culaInitialize
	culaShutdown
	culaGetLastStatus
	culaGetStatusString
	culaGetErrorInfo
	culaFreeBuffers
	culaGetDeviceCount
	culaSelectDevice
	culaGetExecutingDevice
	culaGetDeviceInfo
	culaGetOptimalPitch
	culaDeviceMalloc
	culaDeviceFree

	Linear Algebra Routines
	Data Types
	Host Interface Compared To Device Interface
	Note on Leading Dimensions
	BDSQR
	GEBRD
	GEEV
	GEHRD
	GELQF
	GELS
	GEQLF
	GEQRF
	GEQRS
	GERQF
	GESV
	GESV (Iteratively Refined)
	GESVD
	GETRF
	GETRI
	GETRS
	GGLSE
	GGRQF
	ORGBR/UNGBR
	ORGHR/UNGHR
	ORGLQ/UNGLQ
	ORGQL/UNGQL
	ORGQR/UNGQR
	ORGRQ/UNGRQ
	ORMLQ/UNMLQ
	ORMQL/UNMQL
	ORMQR/UNMQR
	ORMRQ/UNMRQ
	POSV
	POTRF
	POTRS
	STEBZ
	STEQR
	SYEV/HEEV
	SYEVX/HEEVX
	SYRDB/HERDB
	SYTRD/HETRD
	TRTRI
	TRTRS

	Differences Between CULA and LAPACK
	No Workspace Parameters

	Common Errors
	Pivot Arrays
	Padding With Zeros

