23Oct/11Off

Interpreting CULA Sparse Results

by John

One design goal for CULA Sparse was to give the user informative output so to avoid the user having to write verbose checking routines. The routine culaIterativeResultString() is key here. This routine accepts a culaIterativeResult structure which is an output from each CULA Sparse solver (it is the last parameter). The output produced is shown below:

Solver:      Cg
Precond:     Block Jacobi (block size 16)
Flag:        Converged successfully in 27 iterations
Residual:    8.424304e-07

Total Time:  0.02827s (overhead + precond + solve)
   Overhead: 0.000569s
   Precond:  2.8e-05s
   Solve:    0.02767s

You will notice that basic stats are produced, such as the solver and preconditioner used. The Flag field helps to interpret the mathematical status of the solve process. The example here shows a successful convergence in 27 iterations, but the Flag can also indicate conditions such as solver stagnation (failing to make progress for several consecutive iterations) or numerical breakdown. The Residual field indicates the quality of the final answer.

There is then a timing output block, which shows a total execution time plus a breakdown of where the time was spent. The Overhead field shows time spent for GPU-specific operations such as device memory allocation and transfer. The Precond field shows the total time required to generate the preconditioner, because the time required to generate a given preconditioner can vary wildly among different matrices and different preconditioners. The final field, Solve, shows the time taken for the actual system solution.

In addition to the culaIterativeResult field, each solver returns a culaStatus that is used to indicate important runtime information, such as incorrect parameters (specifying a matrix size less than zero, for example) or not having the proper version of the CUDA driver installed. Users of CULA Dense will already be familiar with this parameter. In all cases, it is recommended to first check the returned status, followed then by obtaining the iterative result string. The examples in your CULA Sparse installation clearly show how to integrate this into your code.

Comments (0) Trackbacks (0)

Sorry, the comment form is closed at this time.

Trackbacks are disabled.